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Week 8 Summary

| C. Bruschini, E. Charbon | 2025

8.1 Introduction to Probability: 𝑃𝑃 𝒜𝒜 ,𝑃𝑃{𝒜𝒜|ℬ} → Bayes′ rule, Law of Total Prob. (LOTP), 

Independent Variables

8.2 Random Variables: discrete/continuous RV 𝑋𝑋 and its distribution expressed as

PMF 𝑝𝑝𝑋𝑋 𝑥𝑥 / PDF 𝑓𝑓𝑋𝑋 𝑥𝑥 ↔ CDF 𝐹𝐹𝑋𝑋(𝑥𝑥)

Examples: Binomial: Bin(𝑛𝑛,𝑝𝑝), Poisson: 𝑋𝑋~Pois 𝜆𝜆 , Uniform: 𝑈𝑈~Unif 𝑎𝑎, 𝑏𝑏 , Normal (Gaussian): 

𝑋𝑋~𝒩𝒩 𝜇𝜇,𝜎𝜎2 , Exponential: 𝑋𝑋~Expo 𝜆𝜆

8.3 Moments: RV 𝑋𝑋: expected value (mean) 𝐸𝐸 𝑋𝑋 , variance 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝜎𝜎2 /standard 

deviation 𝑆𝑆𝑆𝑆 𝑋𝑋 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝜎𝜎 → 𝑛𝑛-th moment 𝐸𝐸 𝑋𝑋𝑛𝑛 , central moment /standardized moment 

and their properties ← moment generating function (MGF) 𝜙𝜙 𝑡𝑡 = 𝐸𝐸 𝑒𝑒𝑡𝑡𝑡𝑡

S
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Week 8 Summary

| C. Bruschini, E. Charbon | 2025

8.4 Covariance and Correlation: 

Multiple RVs → Multivariate distributions (8.1, 8.2 →): joint → marginal, → conditional, Independent 

distributions

Covariance 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 (unitless version)

Variance of multivariate distributions:

1. 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑌𝑌 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 + 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 + 2𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌

2. 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋1 + ⋯+ 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋𝑛𝑛 + 2∑𝑖𝑖<𝑗𝑗 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗

S
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Outline

8.1 Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0 Random Variables/2

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025
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9.0.1 Uniform Distribution

 Uniform random variable in 𝑎𝑎, 𝑏𝑏 : completely random number between 
𝑎𝑎 and 𝑏𝑏

-> PDF constant over chosen interval

 Uniform distribution 𝑈𝑈~Unif 𝑎𝑎, 𝑏𝑏 in the interval 𝑎𝑎, 𝑏𝑏 if:

PDF: 𝑓𝑓𝑈𝑈 𝑥𝑥 = �
1

𝑏𝑏 − 𝑎𝑎
if 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏

0 otherwise

CDF: 𝐹𝐹𝑈𝑈 𝑥𝑥 = �
0 if 𝑥𝑥 ≤ 𝑎𝑎

𝑥𝑥 − 𝑎𝑎
𝑏𝑏 − 𝑎𝑎

if 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏

1 if 𝑥𝑥 ≥ 𝑏𝑏

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.2

Unif(0,1) PDF & CDF

S
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9.0.1 Uniform Distribution (contd.)

 Probability is inversely proportional to length.

 Even in a sub-interval, we still have a uniform distribution

Mean: 𝐸𝐸{𝑈𝑈} = �
𝑎𝑎

𝑏𝑏
𝑥𝑥

1
𝑏𝑏 − 𝑎𝑎

𝑑𝑑𝑥𝑥 =
𝑎𝑎 + 𝑏𝑏

2

Second Order Moment: 𝐸𝐸{𝑈𝑈2} = �
𝑎𝑎

𝑏𝑏
𝑥𝑥2

1
𝑏𝑏 − 𝑎𝑎

𝑑𝑑𝑑𝑑 =
1
3
𝑏𝑏3 − 𝑎𝑎3

𝑏𝑏 − 𝑎𝑎

Variance∗: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑈𝑈 = 𝐸𝐸 𝑈𝑈2 − 𝐸𝐸 𝑈𝑈 2 =
1
3
𝑏𝑏3 − 𝑎𝑎3

𝑏𝑏 − 𝑎𝑎
−

𝑎𝑎 + 𝑏𝑏
2

2

=

=
(𝑏𝑏 − 𝑎𝑎)2

12

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.2

Unif(0,1) PDF & CDF

*Using 8.3.4 (W8)
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9.0.2 Standard Gaussian Distribution

 Gaussian (or Normal) distribution: 
 well-known continuous distribution with a bell-shaped PDF
 widely used in statistics because of the central limit theorem (see next 

section) 

 Standard Gaussian 𝑍𝑍~𝒩𝒩 0,1 :

PDF: 𝜑𝜑 𝑧𝑧 =
1
2𝜋𝜋

𝑒𝑒−𝑧𝑧2/2, −∞ < 𝑧𝑧 < ∞

CDF: Φ 𝑧𝑧 = �
−∞

𝑧𝑧
𝜑𝜑 𝑡𝑡 𝑑𝑑𝑑𝑑 = �

−∞

𝑧𝑧 1
2𝜋𝜋

𝑒𝑒−𝑡𝑡2/2 𝑑𝑑𝑑𝑑

No closed form available for the CDF. However, note that:

�
−∞

∞
𝑒𝑒−𝑧𝑧2/2 𝑑𝑑𝑑𝑑 = 2𝜋𝜋

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

Standard Gaussian PDF/CDF

S
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9.0.2 Standard Gaussian Distribution (contd.)

 Properties: symmetry of PDF, symmetry of tail areas, of 𝑍𝑍 and −𝑍𝑍

Mean: 𝐸𝐸{𝑍𝑍} =
1
2𝜋𝜋

�
−∞

∞
𝑧𝑧𝑒𝑒−𝑧𝑧2/2 𝑑𝑑𝑧𝑧 = 0

Variance ∗: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍 = 𝐸𝐸 𝑍𝑍2 − 𝐸𝐸 𝑍𝑍 2 =
1
2𝜋𝜋

�
−∞

∞
𝑧𝑧2𝑒𝑒

−𝑧𝑧2
2 𝑑𝑑𝑑𝑑 =

=
2
2𝜋𝜋

− �𝑧𝑧𝑒𝑒−𝑧𝑧2/2
0

∞
+ �

0

∞
𝑒𝑒
−𝑧𝑧2
2 𝑑𝑑𝑑𝑑 =

2
2𝜋𝜋

0 +
2𝜋𝜋
2

= 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

Standard Gaussian PDF/CDF

(integrating by parts)

*Using 8.3.3 LOTUS (W8)
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9.0.2 Gaussian Distribution

 Gaussian (or Normal) distribution with any mean 𝜇𝜇 and variance 𝜎𝜎: 
location-scale transformation of the standard Normal

𝑋𝑋 = 𝜇𝜇 + 𝜎𝜎𝜎𝜎

𝑋𝑋~𝒩𝒩 𝜇𝜇,𝜎𝜎2

Mean∗: 𝐸𝐸 𝑋𝑋 = 𝐸𝐸 𝜇𝜇 + 𝜎𝜎𝜎𝜎 = 𝐸𝐸{𝜇𝜇} + 𝜎𝜎𝜎𝜎{𝑍𝑍} = 𝜇𝜇

Variance∗∗: 𝑉𝑉𝑉𝑉𝑉𝑉{𝑋𝑋} = 𝑉𝑉𝑉𝑉𝑉𝑉 𝜇𝜇 + 𝜎𝜎𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝜎𝜎𝜎𝜎 = 𝜎𝜎2𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍 = 𝜎𝜎2

 Standardisation process (from 𝑋𝑋 back to 𝑍𝑍):

for 𝑋𝑋~𝒩𝒩 𝜇𝜇,𝜎𝜎2 ,
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

~𝒩𝒩 0,1

| C. Bruschini, E. Charbon | 2025

µ-3𝜎𝜎 µ-2𝜎𝜎 µ-𝜎𝜎 µ       µ+𝜎𝜎 µ+2𝜎𝜎 µ+3𝜎𝜎

µ-3𝜎𝜎 µ-2𝜎𝜎 µ-𝜎𝜎 µ       µ+𝜎𝜎 µ+2𝜎𝜎 µ+3𝜎𝜎

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

Gaussian PDF/CDF

*Using linearity property (W8)
** Using 8.3.4 (W8)
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9.0.2 Gaussian Distribution (contd.)

 General Gaussian CDF 𝐹𝐹 𝑥𝑥 and PDF 𝑓𝑓 𝑥𝑥 :

CDF: 𝐹𝐹 𝑥𝑥 = Φ
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

PDF: 𝑓𝑓 𝑥𝑥 = 𝜑𝜑
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

1
𝜎𝜎

 Proof:

𝐹𝐹 𝑥𝑥 = 𝑃𝑃{𝑋𝑋 ≤ 𝑥𝑥} = 𝑃𝑃
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

≤
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

= Φ
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

𝑓𝑓 𝑥𝑥 =
𝑑𝑑
𝑑𝑑𝑥𝑥

Φ
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

= 𝜑𝜑
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

1
𝜎𝜎

=
1
2𝜋𝜋𝜎𝜎

𝑒𝑒𝑥𝑥𝑥𝑥 −
𝑥𝑥 − 𝜇𝜇 2

2𝜎𝜎2

| C. Bruschini, E. Charbon | 2025

µ-3𝜎𝜎 µ-2𝜎𝜎 µ-𝜎𝜎 µ       µ+𝜎𝜎 µ+2𝜎𝜎 µ+3𝜎𝜎

µ-3𝜎𝜎 µ-2𝜎𝜎 µ-𝜎𝜎 µ       µ+𝜎𝜎 µ+2𝜎𝜎 µ+3𝜎𝜎

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

Gaussian PDF/CDF

S
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9.0.2 Gaussian Distribution (contd.)

 Important properties – if 𝑋𝑋~𝒩𝒩 𝜇𝜇,𝜎𝜎2 ,

𝑃𝑃 𝑋𝑋 − 𝜇𝜇 < 𝜎𝜎 ≈ 0.68

𝑃𝑃 𝑋𝑋 − 𝜇𝜇 < 2𝜎𝜎 ≈ 0.95

𝑃𝑃 𝑋𝑋 − 𝜇𝜇 < 3𝜎𝜎 ≈ 0.997

Full Width Half Maximum FWHM = 𝑃𝑃 𝑋𝑋 − 𝜇𝜇 < 1.175𝜎𝜎

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 2 2 ln 2𝜎𝜎 ≈ 2.355 𝜎𝜎

| C. Bruschini, E. Charbon | 2025

µ-3𝜎𝜎 µ-2𝜎𝜎 µ-𝜎𝜎 µ       µ+𝜎𝜎 µ+2𝜎𝜎 µ+3𝜎𝜎

µ-3𝜎𝜎 µ-2𝜎𝜎 µ-𝜎𝜎 µ       µ+𝜎𝜎 µ+2𝜎𝜎 µ+3𝜎𝜎

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

Gaussian PDF/CDF

FWHM
Q
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9.0.2 Gaussian Distribution – Example 1

| C. Bruschini, E. Charbon | 2025

Example of complete PET
detection module

R. Walker et al., IISW, 2013

Silicon photomultiplier 
(SiPM) tile (example: onsemi)

Scintillating crystal 
(LYSO)
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9.0.2 Gaussian Distribution – Example 1

| C. Bruschini, E. Charbon | 2025

S. Gundacker et al., Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission, PMB 65 (2020).

S. Gundacker et al., Time of flight positron emission tomography towards 100ps resolution with L(Y)SO: an experimental and theoretical analysis, JINST 8 (2013).

Simplified experimental set-up

Experimental results 
(∆T = Coincidence Time Resolution = T2-T2)

See also 
slide 27

F. Gramuglia, EPFL Thèse 8720 (2022).
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9.0.2 Gaussian Distribution – Example 2

(A) Non-Gaussian behavior – exponential tail – of 
the SPADs timing uncertainty (jitter noise) due to 
carrier diffusion -> (B) revised junction design

| C. Bruschini, E. Charbon | 2025
C. Niclass et al., A 128×128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. IEEE JSSC 43 (2008).

A. Ulku et al., A 512×512 SPAD Image Sensor With Integrated Gating for Widefield FLIM, IEEE JSTQE 25 (2019).

C. Veerappan & E. Charbon, A Low Dark Count p-i-n Diode Based SPAD in CMOS Technology, IEEE TED 63 (2016).

BLUE laser
(405 nm)

RED laser
(637 nm)

A)

B)
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9.0.3 Binomial Distribution

 Suppose that 𝑛𝑛 independent Bernoulli trials are performed. 
Let 𝑝𝑝 be the probability of success, 1 − 𝑝𝑝 the probability of 
failure, 𝑋𝑋 (RV) the number of successes. 

 The distribution of 𝑋𝑋 is called binomial distribution Bin(𝑛𝑛,𝑝𝑝)
with parameters 𝑛𝑛 and 𝑝𝑝 if:

PMF: 𝑃𝑃 𝑋𝑋 = 𝑘𝑘 =
𝑛𝑛
𝑘𝑘

𝑝𝑝𝑘𝑘 1 − 𝑝𝑝 𝑛𝑛−𝑘𝑘

Mean: 𝐸𝐸 𝑋𝑋 = �
𝑘𝑘=0

𝑛𝑛

𝑘𝑘
𝑛𝑛
𝑘𝑘

𝑝𝑝𝑘𝑘 1 − 𝑝𝑝 𝑛𝑛−𝑘𝑘 = 𝑛𝑛𝑛𝑛

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.3
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9.0.3 Binomial Distribution

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 9.3

S
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9.0.4 Poisson Distribution

 Definition: a random variable 𝑋𝑋~Pois 𝜆𝜆 has a Poisson 
distribution with parameter 𝜆𝜆 if its PMF:

PMF: 𝑃𝑃 𝑋𝑋 = 𝑘𝑘 =
𝑒𝑒−𝜆𝜆𝜆𝜆𝑘𝑘

𝑘𝑘!
, 𝑘𝑘 = 0,1,2, …

Mean: 𝐸𝐸 𝑋𝑋 = 𝑒𝑒−𝜆𝜆�
𝑘𝑘=0

∞

𝑘𝑘
𝜆𝜆𝑘𝑘

𝑘𝑘!
= 𝜆𝜆

Variance: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝐸𝐸 𝑋𝑋2 − 𝐸𝐸 𝑋𝑋 2 =

= 𝜆𝜆 1 + 𝜆𝜆 − 𝜆𝜆2 = 𝜆𝜆

NB: Taylor series: �
𝑘𝑘=0

∞
𝜆𝜆𝑘𝑘

𝑘𝑘!
= 𝑒𝑒𝜆𝜆

| C. Bruschini, E. Charbon | 2025

Pois(2) PMF Pois(2) CDF

Pois(5) PMF Pois(5) CDF

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.7
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9.0.4 Poisson Distribution (contd.)

 The Poisson distribution has the following properties:

1. If 𝑋𝑋~Pois 𝜆𝜆1 and 𝑌𝑌~Pois 𝜆𝜆2 and 𝑋𝑋 and 𝑌𝑌 are 
independent, then the distribution of

𝑋𝑋 + 𝑌𝑌~Pois 𝜆𝜆1 + 𝜆𝜆2

2. If 𝑋𝑋~Pois 𝜆𝜆1 and 𝑌𝑌~Pois 𝜆𝜆2 and 𝑋𝑋 and 𝑌𝑌 are 
independent, then the conditional distribution of 𝑋𝑋
given 𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛 is:

𝑃𝑃(𝑋𝑋 = 𝑘𝑘|𝑋𝑋 + 𝑌𝑌 = 𝑛𝑛)~Bin 𝑛𝑛, 𝜆𝜆1/(𝜆𝜆1 + 𝜆𝜆2 )

| C. Bruschini, E. Charbon | 2025

Pois(2) PMF Pois(2) CDF

Pois(5) PMF Pois(5) CDF

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.7

S
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Poisson Distribution vs. Light Sources

 Non-classical light: Sub-Poissonian -> antibunched (anticorrelated)

 Coherent light source (Laser): Poissonian, random spacing (uncorrelated)

 Thermal Light: Super-Poissonian, Bose-Einstein distribution with zero 
counts as most probable count (bunched, positively correlated)

However, in practice it defaults to Gaussian due to the very low 
coherence time, O(ps), and the corresponding experimental difficulties

Experimentally one can use pseudothermal light*.

https://demonstrations.wolfram.com/PhotonNumberDistributions/

| C. Bruschini, E. Charbon | 2025

https://www.stmarys-ca.edu/sites/default/files/attachments/files/GriderJordanFinalReport_0.pdf 

http://physics.gu.se/~tfkhj/lecture_X_differential_transmission-2.pdf

By Ajbura - Vectorised version of File:Photon 
bunching.png, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid
=73299604

*E.g. scattering of a laser beam on a
rotating ground glass disc

https://demonstrations.wolfram.com/PhotonNumberDistributions/
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Poisson Distribution vs. Light Sources

�𝑛𝑛 = average photon number

 Non-classical light: Sub-Poissonian
𝝈𝝈 < �𝒏𝒏

 Coherent light source (Laser): Poissonian

𝑷𝑷 𝒏𝒏 =
�𝒏𝒏𝒏𝒏

𝒏𝒏!
𝒆𝒆−�𝒏𝒏,𝝈𝝈 = �𝒏𝒏

For large photon numbers, the relative fluctuations ⁄𝝈𝝈 �𝒏𝒏 tend to 0

 Thermal Light: Super-Poissonian, Bose-Einstein distribution

𝑷𝑷 𝒏𝒏 = 𝟏𝟏 − 𝒆𝒆 ⁄−ℏ𝝎𝝎 𝒌𝒌𝑩𝑩𝑻𝑻 𝒆𝒆 ⁄−𝒏𝒏ℏ𝝎𝝎 𝒌𝒌𝑩𝑩𝑻𝑻 =
�𝒏𝒏𝒏𝒏

�𝒏𝒏 + 𝟏𝟏 𝒏𝒏+𝟏𝟏 , �𝒏𝒏 = 𝒆𝒆 ⁄ℏ𝝎𝝎 𝒌𝒌𝑩𝑩𝑻𝑻 − 𝟏𝟏
−𝟏𝟏

,

𝝈𝝈 = �𝒏𝒏𝟐𝟐 + �𝒏𝒏 (𝒇𝒇𝒇𝒇𝒇𝒇 𝑻𝑻 ≪ 𝝉𝝉𝒄𝒄) > �𝒏𝒏
For large photon numbers, the relative fluctuations ⁄𝝈𝝈 �𝒏𝒏 tend to 1

| C. Bruschini, E. Charbon | 2025

https://www.stmarys-ca.edu/sites/default/files/attachments/files/GriderJordanFinalReport_0.pdf 

http://physics.gu.se/~tfkhj/lecture_X_differential_transmission-2.pdf

Pseudothermal light source

Advanced Lab Course (F-Praktikum), Exp. 45, Photon Statistics, v. Aug. 21 2017 T. Stagner et al., Step-by-step guide to reduce spatial
Coherence of laser light using a rotating ground glass 
diffuser, OSA Applied Optics 56 (2017).
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9.0.5 Exponential Distribution

 A continuous variable 𝑌𝑌~Expo 𝜆𝜆 has an Exponential distribution with 
parameter 𝜆𝜆 if:

PDF: 𝑓𝑓𝑌𝑌 𝑦𝑦 = 𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆 , 𝑦𝑦 > 0

CDF: 𝐹𝐹𝑌𝑌 𝑦𝑦 = 1 − 𝑒𝑒−𝜆𝜆𝑦𝑦, 𝑦𝑦 > 0

 If we start from 𝑋𝑋~𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 1 :

𝐸𝐸{𝑋𝑋} = �
0

∞
𝑥𝑥𝑒𝑒−𝑥𝑥 𝑑𝑑𝑥𝑥 = 1

𝐸𝐸{𝑋𝑋2} = �
0

∞
𝑥𝑥2𝑒𝑒−𝑥𝑥 𝑑𝑑𝑑𝑑 = 2

𝑉𝑉𝑉𝑉𝑉𝑉{𝑋𝑋} = 𝐸𝐸{𝑋𝑋2} − 𝐸𝐸{𝑋𝑋} 2 = 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.5

Expo(1)
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9.0.5 Exponential Distribution (contd.)

 In general, for 𝑌𝑌 = 𝑋𝑋/𝜆𝜆~Expo 𝜆𝜆 (scaling), we get:

Mean: 𝐸𝐸{𝑌𝑌} =
1
𝜆𝜆
𝐸𝐸{𝑋𝑋} =

1
𝜆𝜆

Variance: 𝑉𝑉𝑉𝑉𝑉𝑉{𝑌𝑌} =
1
𝜆𝜆2
𝑉𝑉𝑉𝑉𝑉𝑉{𝑋𝑋} =

1
𝜆𝜆2

 Recap: «An Expo 𝜆𝜆 RV represents the waiting time for the first success
in continuous time; the parameter 𝜆𝜆 can be interpreted as the rate at
which successes arrive.”

 Memoryless property: «conditional on our having waited a certain
amount of time (s) without success, the distribution of the remaining
wait time (t) is exactly the same as if we hadn’t waited at all.»

Memoryless: 𝑃𝑃{𝑌𝑌 ≥ 𝑠𝑠 + 𝑡𝑡|𝑌𝑌 ≥ 𝑠𝑠} = 𝑃𝑃{𝑌𝑌 ≥ 𝑡𝑡}

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.5

Expo(1)

Ex
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9.0.5 Exponential Distribution (contd.)

 Memoryless property: «conditional on our having waited a certain
amount of time (s) without success, the distribution of the remaining
wait time (t) is exactly the same as if we hadn’t waited at all.»

Memoryless: 𝑃𝑃 𝑌𝑌 ≥ 𝑠𝑠 + 𝑡𝑡|𝑌𝑌 ≥ 𝑠𝑠 = 𝑃𝑃 𝑌𝑌 ≥ 𝑡𝑡

𝑒𝑒.𝑔𝑔.𝑃𝑃{𝑌𝑌 ≥ 40|𝑌𝑌 ≥ 30} = 𝑃𝑃{𝑌𝑌 ≥ 10}

𝑒𝑒.𝑔𝑔.𝑃𝑃{𝑌𝑌 ≥ 70|𝑌𝑌 ≥ 60} = 𝑃𝑃{𝑌𝑌 ≥ 10}

PDF: 𝑓𝑓𝑌𝑌 𝑦𝑦 = 𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆, 𝑦𝑦2 = 𝑦𝑦1 + ∆𝑡𝑡

𝑓𝑓𝑌𝑌 𝑦𝑦2
𝑓𝑓𝑌𝑌 𝑦𝑦1

=
𝜆𝜆𝑒𝑒−𝜆𝜆𝑦𝑦2

𝜆𝜆𝑒𝑒−𝜆𝜆𝑦𝑦1
= 𝑒𝑒−𝜆𝜆 ∆𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑒𝑒.𝑔𝑔.
𝑓𝑓𝑌𝑌 𝑦𝑦2 = 4 𝜆𝜆−1

𝑓𝑓𝑌𝑌 𝑦𝑦1 = 3 𝜆𝜆−1
=
𝑓𝑓𝑌𝑌 𝑦𝑦2 = 2 𝜆𝜆−1

𝑓𝑓𝑌𝑌 𝑦𝑦1 = 1 𝜆𝜆−1
= 𝑒𝑒−1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.5

Expo(1)
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9.0.5 Exponential Distribution – Example 1 & 2

Radioactive decay

| C. Bruschini, E. Charbon | 2025

Decay Law:
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜆𝜆𝑁𝑁 ⇒ 𝑁𝑁 𝑡𝑡 = 𝑁𝑁0𝑒𝑒−𝜆𝜆𝑡𝑡

 Universal law of radioactive decay: 
• A nucleus has “no memory”
• A nucleus does not age with the passage of time
-> a nucleus is equally likely to decay at any instant in time 
-> constant decay probability

EN Wikipedia Radioactive_decay / Fluorescence

 NB: The number of decays in a given time interval in a 
radioactive sample is Poisson distributed…

By
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Fluorescence lifetime 𝑆𝑆1 = 𝑆𝑆1 0𝑒𝑒−Γ𝑡𝑡

𝑆𝑆1= concentration of excited state molecules

Γ= decay rate = inverse of fluorescence lifetime = average length of time
to decay from one state to another

Jablonski diagram

Q
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9.0.5 Exponential Distribution – Example 3

| C. Bruschini, E. Charbon | 2025

Gundacker S, Auffray E, Pauwels K and Lecoq P Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a
general study of prompt photons to achieve 10 ps in TOF-PET. IOP Phys. Med. Biol. 61 2802–37

“Physical experiments are imprecise and generate 
errors handled by statistical methods.” 

(I. Vardi)
See also slide 14

Fast vs. 
“slow” 
scintillation 
photons in a 
heavy 
scintillating 
crystal

Q
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9.0.6 Gamma Distribution

 Let 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … ,𝑿𝑿𝒏𝒏 be 𝒏𝒏 i.i.d. 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝝀𝝀 . Then:

𝒀𝒀 = 𝑿𝑿𝟏𝟏 + ⋯+ 𝑿𝑿𝒏𝒏~𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 𝒏𝒏,𝝀𝝀

 The Gamma is nothing else but the distribution obtained
by summing up 𝑛𝑛 independent exponential distributions.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4

Gamma(a,1) Gamma(a,λ)

S
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9.0.6 Gamma Distribution (contd.)

 For the more general gamma distribution 
𝑌𝑌 = 𝑋𝑋/𝜆𝜆~Gamma 𝑎𝑎, 𝜆𝜆 , by simple transformation, we 
obtain:

Mean: 𝐸𝐸 𝑌𝑌 =
1
𝜆𝜆
𝐸𝐸 𝑋𝑋 =

𝑎𝑎
𝜆𝜆

Second Moment: 𝐸𝐸 𝑌𝑌2 =
1
𝜆𝜆2
𝐸𝐸 𝑋𝑋 =

𝑎𝑎 (𝑎𝑎 + 1)
𝜆𝜆2

Variance: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 =
1
𝜆𝜆2
𝑉𝑉𝑉𝑉𝑉𝑉{𝑋𝑋} =

𝑎𝑎
𝜆𝜆2

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4

Gamma(a,λ)

-> calculate mean/variance for some examples

Gamma(a,1)

-> See Appendix A for details

S
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Take-home Messages/W9-1

 Random Variables (RVs):

 Distributions: Uniform, Gaussian, Binomial

 Distributions: Poisson ↔ Exponential

… and their PDF, CDF, Mean, Variance

 Practical examples!

 Scintillation light (two crystals in coincidence) – combination of 
distributions ↔ experimental set-up

 Timing jitter – combination of distributions ↔ experimental set-
up

 Poisson Distribution vs. Light Sources

 Fluorescence lifetime & exponential decay 

 Scintillation light (one single crystal) ↔ experimental set-up

| C. Bruschini, E. Charbon | 2025



Slideaqualab 31Metrology: Elements of Statistics

Probability distributions – Connections & the Big Picture

| C. Bruschini, E. Charbon | 2025
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Cover page.
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Outline

8.1 Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0 Random Variables/2

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025
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9.1.1 Random Process

 A Random (or stochastic) Process (RP) is a time-varying function that 
assigns the outcome of a random experiment to each time instant 𝑋𝑋 𝑡𝑡

Example: a current fluctuating due to thermal noise (-> Week 10), 
the growth of a bacterial population, the movement of a gas 
molecule [Wikipedia Stochastic Process]

 For fixed 𝑡𝑡, a Random Process is a Random Variable

 A Random Process can therefore be viewed as a collection of an infinite 
number of Random Variables. Given that 𝑋𝑋𝑖𝑖 = 𝑋𝑋(𝑡𝑡𝑖𝑖):

joint PDF: 𝑓𝑓𝑋𝑋(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛, 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛)

 A Random Process can be either continuous or discrete

| C. Bruschini, E. Charbon | 2025

H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU 

Original uploader was 
Sullivan.t.j at English 
Wikipedia. – 3D Brownian 
motion process. This 
mathematical image was 
created with Mathematica., 
CC BY-SA 3.0, 
https://commons.wikimedia.
org/w/index.php?curid=224
9027

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 
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9.1.1 Random Process – Example

| C. Bruschini, E. Charbon | 2025

Extension to all possible outcomes of the underlying random
experiment -> Ensemble of signals (= set of all possible 
sample functions)

H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU 

E
n
s
e
m
b
l
e

Time

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 
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9.1.1 Random Process – Example

 Example: Noise is generally modeled as a random process, i.e. a collection 
of random variables, one for each time instant t in interval ]-∞,+∞[

| C. Bruschini, E. Charbon | 2025

µX(t)

t

Fixed t: Random Process becomes a Random Variable 

E. Charbon, “Image Sensors – ET 4390 Course Slides”, Delft 2016
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9.1.1 Random Process (contd.) – Characterization/1

 A Random Process is characterized by the same functions already explained for 
RVs, but which now depend on 𝒕𝒕, i.e.:

CDF: 𝐹𝐹𝑋𝑋 𝑥𝑥, 𝑡𝑡 = 𝑃𝑃{𝑋𝑋(𝑡𝑡) ≤ 𝑥𝑥}

PDF: 𝑓𝑓𝑋𝑋 𝑥𝑥, 𝑡𝑡 =
𝑑𝑑𝐹𝐹𝑋𝑋 𝑥𝑥, 𝑡𝑡

𝑑𝑑𝑑𝑑

Mean: 𝑚𝑚𝑋𝑋 𝑡𝑡 = 𝑋𝑋(𝑡𝑡) = 𝐸𝐸 𝑋𝑋 𝑡𝑡 = �
−∞

∞
𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥, 𝑡𝑡 𝑑𝑑𝑑𝑑

Second Order Moment: 𝑋𝑋2(𝑡𝑡) = 𝐸𝐸 𝑋𝑋2 𝑡𝑡 = �
−∞

∞
𝑥𝑥2 𝑓𝑓𝑋𝑋 𝑥𝑥, 𝑡𝑡 𝑑𝑑𝑑𝑑

Variance: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 𝑡𝑡 = 𝐸𝐸 𝑋𝑋 𝑡𝑡 − 𝑚𝑚𝑋𝑋 𝑡𝑡 2 = �
−∞

∞
𝑥𝑥 −𝑚𝑚𝑋𝑋 𝑡𝑡 2𝑓𝑓𝑋𝑋 𝑥𝑥, 𝑡𝑡 𝑑𝑑𝑑𝑑

| C. Bruschini, E. Charbon | 2025

H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU 

𝑋𝑋(𝑡𝑡)= random variable at time t

Ensemble
averages 

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 
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9.1.1 Random Process (contd.) – Characterization/2

 However, in order to characterize a RP, we need to introduce two more 
functions, e.g. to indicate how rapidly a RP changes in time:

Auto − covariance: 𝐶𝐶𝑋𝑋𝑋𝑋 𝑡𝑡1, 𝑡𝑡2 = 𝐶𝐶𝐶𝐶𝐶𝐶{𝑋𝑋 𝑡𝑡1 ,𝑋𝑋(𝑡𝑡2)}

Auto − correlation: 𝐾𝐾𝑋𝑋𝑋𝑋 𝑡𝑡1, 𝑡𝑡2 = 𝐸𝐸{𝑋𝑋 𝑡𝑡1 � 𝑋𝑋(𝑡𝑡2)}

NB: 𝐶𝐶𝑋𝑋𝑋𝑋 𝑡𝑡1, 𝑡𝑡2 = 𝐸𝐸 𝑋𝑋 𝑡𝑡1 − 𝑚𝑚𝑋𝑋 𝑡𝑡1 𝑋𝑋 𝑡𝑡2 − 𝑚𝑚𝑋𝑋 𝑡𝑡2 =
= 𝐾𝐾𝑋𝑋𝑋𝑋 𝑡𝑡1, 𝑡𝑡2 − 𝑚𝑚𝑋𝑋 𝑡𝑡1 𝑚𝑚𝑋𝑋(𝑡𝑡2)

 In a similar way we can also define:

Cross − covariance: 𝐶𝐶𝑋𝑋𝑌𝑌 𝑡𝑡1, 𝑡𝑡2 = 𝐶𝐶𝐶𝐶𝐶𝐶{𝑋𝑋 𝑡𝑡1 ,𝑌𝑌(𝑡𝑡2)}

Cross − correlation: 𝐾𝐾𝑋𝑋𝑌𝑌 𝑡𝑡1, 𝑡𝑡2 = 𝐸𝐸{𝑋𝑋 𝑡𝑡1 � 𝑌𝑌(𝑡𝑡2)}

| C. Bruschini, E. Charbon | 2025

NB: in general, the autocorrelation 
is the correlation of the signal with 
a delayed copy of itself 
(similarity between observations 
as a function of the time lag 
between them)
[Wikipedia “autocorrelation”]

Cross-correlation: same but 
between two series

H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU 

NB: extended here to two RPs X and Y

𝑋𝑋(𝑡𝑡1)= random variable at time 𝑡𝑡1
𝑋𝑋(𝑡𝑡2)= random variable at time 𝑡𝑡2

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 
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9.1.1 Random Process (contd.) – Example, non-stationary

| C. Bruschini, E. Charbon | 2025

M. A. Karami et al., Random Telegraph Signal in Single-Photon Avalanche Diodes, International Image Sensor Workshop, Bergen, 2009
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9.1.2 Stationary Random Process

 We characterize the RP on how their statistical properties change in 
time. If they do not change, we call the RP stationary. Hence:

𝑓𝑓𝑋𝑋 𝑥𝑥, 𝑡𝑡 = 𝑓𝑓𝑋𝑋(𝑥𝑥)

𝑚𝑚𝑋𝑋 𝑡𝑡 = 𝑋𝑋(𝑡𝑡) = 𝐸𝐸 𝑋𝑋 𝑡𝑡 = �
−∞

∞
𝑥𝑥 𝑓𝑓𝑋𝑋 𝑥𝑥, 𝑡𝑡 𝑑𝑑𝑑𝑑 = 𝜇𝜇𝑋𝑋

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 𝑡𝑡 = 𝐸𝐸 𝑋𝑋 𝑡𝑡 − 𝑚𝑚𝑋𝑋 𝑡𝑡 2 = �
−∞

∞
𝑥𝑥 −𝑚𝑚𝑋𝑋 𝑡𝑡 2𝑓𝑓𝑋𝑋 𝑥𝑥, 𝑡𝑡 𝑑𝑑𝑑𝑑 = 𝜎𝜎2

 Weaker form: in Wide-Sense Stationary RPs, in addition to a constant 
mean, the autocorrelation function only depends on the time difference, 
but not on the absolute position in time:

𝐾𝐾𝑋𝑋𝑋𝑋 𝑡𝑡, 𝑡𝑡 + 𝜏𝜏 = 𝐾𝐾𝑋𝑋𝑋𝑋 𝜏𝜏 (or equivalently 𝐾𝐾𝑋𝑋𝑋𝑋 𝑡𝑡1, 𝑡𝑡2 = 𝐾𝐾𝑋𝑋𝑋𝑋 𝑡𝑡2 − 𝑡𝑡1)

| C. Bruschini, E. Charbon | 2025

H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU 

Ensemble
averages 

Random Processes

Wide-sense stationary
Strict-sense stationary

???

WSS random process 
does not drift with 
time

Ex

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 
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9.1.2 Stationary Random Process – Example

𝑓𝑓𝑋𝑋 𝑥𝑥, 𝑡𝑡 = 𝑓𝑓𝑋𝑋(𝑥𝑥)

𝑚𝑚𝑋𝑋 𝑡𝑡 = 𝑋𝑋(𝑡𝑡) = 𝜇𝜇𝑋𝑋

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 𝑡𝑡 = 𝜎𝜎2

| C. Bruschini, E. Charbon | 2025

µX

t

E. Charbon, “Image Sensors – ET 4390 Course Slides”, Delft 2016
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9.1.2 Stationary Random Process (contd.)

 For a Wide-sense Stationary Random Process 𝑋𝑋(𝑡𝑡), the autocorrelation function has the following 
properties:

1. 𝐾𝐾𝑋𝑋𝑋𝑋 𝑡𝑡1, 𝑡𝑡1 = 𝐾𝐾𝑋𝑋𝑋𝑋 𝑡𝑡2, 𝑡𝑡2 = 𝐾𝐾𝑋𝑋𝑋𝑋 0 = 𝐸𝐸 𝑋𝑋2 𝑡𝑡 = 𝑋𝑋2 𝑡𝑡 ≥ 0 (⟹𝐾𝐾𝑋𝑋𝑋𝑋 0 = total power 
of random signal 𝑋𝑋 𝑡𝑡 , does not change in time)

2. 𝐾𝐾𝑋𝑋𝑋𝑋 𝜏𝜏 = 𝐾𝐾𝑋𝑋𝑋𝑋 −𝜏𝜏

3. lim
𝜏𝜏 →∞

𝐾𝐾𝑋𝑋𝑋𝑋(𝜏𝜏) = lim
𝜏𝜏 →∞

𝐸𝐸 𝑋𝑋 𝑡𝑡 � 𝑋𝑋 𝑡𝑡 + 𝜏𝜏 =

= 𝐸𝐸 𝑋𝑋 𝑡𝑡 𝐸𝐸 𝑋𝑋 𝑡𝑡 + 𝜏𝜏 = 𝑋𝑋 𝑡𝑡 2 (example: average or DC power of random signal 𝑋𝑋 𝑡𝑡 )

4. 𝐾𝐾𝑋𝑋𝑋𝑋 𝜏𝜏 ≤ 𝐾𝐾𝑋𝑋𝑋𝑋 0 for all 𝜏𝜏

| C. Bruschini, E. Charbon | 2025

H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU 

𝐾𝐾𝑋𝑋𝑋𝑋 𝜏𝜏

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 
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9.1.3 Ergodicity

 “A Random Process is ergodic if any sample function of the process takes 
all possible values in time with the same relative frequency that an 
ensemble will take at any given instant”. Basically, its statistical properties 
can be deduced from a single, sufficiently long, random sample. 
[Wikipedia] Hence:

𝑋𝑋(𝑡𝑡) = 𝐸𝐸 𝑋𝑋 𝑡𝑡 = lim
𝑇𝑇→∞

1
𝑇𝑇
�
−𝑇𝑇/2

𝑇𝑇/2
𝑥𝑥 𝑡𝑡 𝑑𝑑𝑑𝑑 = 𝑋𝑋 𝑡𝑡

𝐾𝐾𝑋𝑋𝑋𝑋 𝜏𝜏 = 𝐸𝐸 𝑋𝑋 𝑡𝑡 � 𝑋𝑋 𝑡𝑡 + 𝜏𝜏 = lim
𝑇𝑇→∞

1
𝑇𝑇
�
−𝑇𝑇/2

𝑇𝑇/2
𝑥𝑥 𝑡𝑡 𝑥𝑥∗(𝑡𝑡 − 𝜏𝜏) 𝑑𝑑𝑑𝑑 = 𝒦𝒦𝑋𝑋𝑋𝑋 𝜏𝜏

where 𝑋𝑋 𝑡𝑡 is the time-average mean of the RP 𝑋𝑋 𝑡𝑡 and 𝒦𝒦𝑋𝑋𝑋𝑋 𝜏𝜏 is the 
time-average autocorrelation function.

| C. Bruschini, E. Charbon | 2025

Random Processes

Wide-sense stationary
Strict-sense stationary

Ergodic

Ensemble function Time average

H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU 

“The ergodic hypothesis is that 
personal experience over time of 

a single individual reflects the 
current statistics of the general 

population.” 
(I. Vardi)

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 
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Take-home Messages/W9-2

 Random Process:

 Definition, Ensemble vs. Time

 CDF, PDF, Moments, Autocorrelation

 Wide-sense & strict-sense stationary

 Ergodicity

| C. Bruschini, E. Charbon | 2025

Time
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Outline

8.1 Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0 Random Variables/2

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025
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9.2.1 Law of Large Numbers

 Law of large numbers: describes the behavior of the sample mean of 
i.i.d. random variables as the sample size grows

 Assume i.i.d. 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … with finite mean µ and finite variance 𝜎𝜎2

Sample Mean: 𝑋𝑋𝑛𝑛 =
𝑋𝑋1 + ⋯𝑋𝑋𝑛𝑛

𝑛𝑛

 𝑋𝑋𝑛𝑛 itself a random variable with

Mean: 𝐸𝐸{𝑋𝑋𝑛𝑛} =
1
𝑛𝑛
𝐸𝐸{𝑋𝑋1 + ⋯𝑋𝑋𝑛𝑛} =

1
𝑛𝑛
𝐸𝐸{𝑋𝑋1} + ⋯+ 𝐸𝐸{𝑋𝑋𝑛𝑛} = 𝜇𝜇

Variance: Var{𝑋𝑋𝑛𝑛} =
1
𝑛𝑛2
𝑉𝑉𝑉𝑉𝑉𝑉{𝑋𝑋1 + ⋯𝑋𝑋𝑛𝑛}

=
1
𝑛𝑛2

(𝑉𝑉𝑉𝑉𝑉𝑉{𝑋𝑋1} + ⋯+ 𝑉𝑉𝑉𝑉𝑉𝑉{𝑋𝑋𝑛𝑛}) =
𝜎𝜎2

𝑛𝑛

| C. Bruschini, E. Charbon | 2025

NB: i.i.d. = independent and 
identically distributed Random 
Variables, have the same PDF and 
are all mutually independent

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 10.2
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9.2.1 Law of Large Numbers (contd.)

 Law of Large Numbers: as 𝑛𝑛 grows, the sample mean 𝑋𝑋𝑛𝑛 converges to
the true mean µ

 Essential for simulations, statistics, etc. – implicitely used when we use:

1) the proportion of times that something happened as an approximation
to its probability,

2) the average value in the replications of some quantity to approximate its
theoretical average.

Example: improvement in LiDAR ranging precision…

…when accumulating timing measurements, as 1/n

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 10.2

Q
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9.2.2 Central Limit Theorem

 Law of Large Numbers: as 𝑛𝑛 grows, the sample mean 𝑋𝑋𝑛𝑛 converges to 
the true mean µ

But with which distribution?

Sum of a large number of i.i.d. random variables has an approximately 
Gaussian (normal distribution),

 regardless of the distribution of the individual RVs (could be 
anything!)

 very weak assumptions.

As 𝑛𝑛 → ∞, 𝑛𝑛
𝑋𝑋𝑛𝑛 − 𝜇𝜇
𝜎𝜎

~𝒩𝒩 0,1

(i.e. the CDF of the l.h.s. approaches Φ, the CDF of the standard 
Gaussian distribution)

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 10.3

Q
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9.2.2 Central Limit Theorem (contd.)

• In other words: start with independent RVs from almost any distribution, discrete or continuous, 
-> add them up
-> distribution of the resulting RV has a Gaussian shape!

 The CLT is an asymptotic result. Approximation: for large 𝑛𝑛

𝑛𝑛
𝑋𝑋𝑛𝑛 − 𝜇𝜇
𝜎𝜎

→ 𝒩𝒩 0,1

 NB: The distribution of the 𝑋𝑋𝑗𝑗 is still relevant, e.g. if highly skewed or multimodal, 𝑛𝑛 might need to 
be very large before the Gaussian approximation becomes accurate.

 Conversely, if the 𝑋𝑋𝑗𝑗 are already i.i.d. Normals (Gaussian), the distribution of 𝑋𝑋𝑛𝑛 is exactly 
𝒩𝒩 𝜇𝜇, ⁄𝜎𝜎2 𝑛𝑛 for all n.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 10.3
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9.2.2 Central Limit Theorem - Example

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 10.3

Starting 
distribution

Nothing else than 
Gamma(n,1)

Histograms of the 
distribution of 𝑋𝑋𝑛𝑛
for different 
starting
distributions of the 
𝑋𝑋𝑗𝑗 and increasing 
values of 𝑛𝑛.
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9.2.2 Central Limit Theorem - Example

 Poisson convergence to Gaussian: if
𝑌𝑌~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑛𝑛

we can consider 𝑌𝑌 as a sum of 𝑛𝑛 i.i.d. Pois(1) RVs.

For large 𝑛𝑛: 𝑌𝑌 → 𝒩𝒩 𝑛𝑛,𝑛𝑛

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 10.3
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Outline

8.1 Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0 Random Variables/2

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025
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9.3 Elements of Estimation Theory

 Estimation theory has the purpose to solve one problem: given a set of data

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁−1

which depends on an unknown parameter vector 𝜃𝜃, determine an estimator

𝜃̂𝜃 = 𝑔𝑔(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁−1)

where 𝑔𝑔 is some function.

 In other words, how do we use collected data to estimate unknown parameters of a 
distribution? 

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.3
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9.3 Elements of Estimation Theory (contd.)

 In general, if we assume that 𝜃𝜃 is deterministic, we will have a classical 
estimation problem. It can be solved in the following ways, and many 
more:

1. Least Squares Estimator (LSE)

2. Minimum Variance Unbiased Estimator (MVU)

3. Maximum Likelihood Estimator (MLE)

4. Best Linear Unbiased Estimator (BLUE)

5. …

| C. Bruschini, E. Charbon | 2025

Ex



Slideaqualab 54Metrology: Elements of Statistics

9.3.1 Elements of Estimation Theory – Simple Mean Example

 Simple example: estimate the mean of a sample of i.i.d. RVs 
𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … ,𝑋𝑋𝑛𝑛

Sample Mean: 𝑋𝑋𝑛𝑛 =
1
𝑛𝑛
�
𝑗𝑗=1

𝑛𝑛

𝑋𝑋𝑗𝑗

is an estimate of the population mean or true mean, 
𝐸𝐸{𝑋𝑋𝑗𝑗} = the mean of the distribution from which the 𝑋𝑋𝑗𝑗
were drawn.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.3
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9.3.2 Elements of Estimation Theory – LSE Example

Least Squares Estimator (LSE)

| C. Bruschini, E. Charbon | 2025

I.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1st ed., 2010, Chap. 6.3

https://commons.wikimedia.org/wiki/File:Linear_regression.svg
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9.3.3 Elements of Estimation Theory – MLE Example

Maximum Likelihood Estimator (MLE) to 
correct for the exponential count loss in 
binary, clock-driven SPAD imagers

| C. Bruschini, E. Charbon | 2025

I. M. Antolovic et al, Nonuniformity Analysis of a 65-kpixel CMOS SPAD Imager, IEEE Trans. on Electron Devices 63, 2016  

𝐶𝐶𝑀𝑀: Measured count rate (externally)

𝐶𝐶𝐷𝐷: Detected count rate (internally)

Q

Q
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

Positron Emission 
Tomography 
Basics

L. Braga et al., ISSCC, 2013

GE Discovery IQ, Nov 2016
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

Positron Emission 
Tomography 
Reconstruction 
Example

G. Nemeth, Mediso, Delft WS 2010
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025
Typ some 104 photons/scintillation, few 103 detected

Positron Emission Tomography Building Blocks & Main Variables

Problem: estimate the scintillation event time 𝑇𝑇0 given a set of timing measurements 𝑡𝑡𝑞𝑞
Aim: obtain estimator with lowest variance (best timing precision)

R. Walker et al., IISW, 2013
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

E. Venialgo et al., 
NSS-MIC, 2015

M. Fishburn, E. Charbon, 
NSS-MIC, 2012

M. Fishburn, E. Charbon, 
IEEE TNS(57), 2010

LYSO: τrise~70ps, τfall~30ns
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

Order 
Statistics

PDF of the qth photoelectron’s time-of-registration.

E. Venialgo, E. Charbon et al., PMB 2015

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Theorem 8.6.4

Order statistics implies 
correlation between 
timestamps

𝑓𝑓 𝑡𝑡 ,𝐹𝐹(𝑡𝑡) = 
scintillation 
PDF/CDF
(previous slide)
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

D. Schaart, ANSRI 2016, 2016, Dublin, Ireland
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

A simple estimator 
approach: 

General estimator

Simple mean coeffs.

E. Venialgo, E. Charbon et al., PMB 2015

(𝑝𝑝 is one of 3 possible estimators)

(𝑝𝑝 = 1 estimator)

Q

D. Schaart, ANSRI 2016, 2016, Dublin, Ireland
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

General estimator

BLUE coeffs.  (correlation matrix)

 Assuming large number of measurements
 Other Estimator Approaches: Best Linear Unbiased Estimator (BLUE)

E. Venialgo, E. Charbon et al., PMB 2015

(𝑝𝑝 = 3 estimator)
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Outline

8.1 Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0 Random Variables/2

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025
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9.4 Error Analysis

 The aim of error analysis is to quantify and record the errors associated 
with the inevitable spread in a set of measurements.

 Confidence boundaries represent the quality of the approximation given 
by the uncertainty. 

Example: the six-sigma method, 5 sigma limit (CERN)

 Uncertainties can be associated to random errors (hence influencing the 
variance of the measurement distribution) or to systematic errors (acting 
on the mean value of the measurement distribution).

| C. Bruschini, E. Charbon | 2025

I.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1st ed., 2010, Chap. 1
https://universe-review.ca/R15-20-accelerators03.htm

Q

Higgs boson

Hint of new discovery ->
statistical fluctuation…
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9.4.1 Accuracy

Accuracy -> mean
 The accuracy of a measurement gives a notion of the mean

value of the set of measurements distribution with respect to
the real value.

 An accurate measurements distribution will hence have a
very small systematic error, but could be affected by a large
spread in the data (high variance).

 Accuracy can be enhanced in the experimental real life by
means of calibration techniques.

| C. Bruschini, E. Charbon | 2025

I.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1st ed., 2010, Chap. 1
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9.4.1 Accuracy – Example

| C. Bruschini, E. Charbon | 2025

Calibration of a 
Time-to-Digital 
converter
S. Burri, EPFL, MDPI 
Instruments, 2018

Q
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9.4.2 Precision

Precision -> spread (variance)
 The precision of a measurement gives information about

the spread of the measured set of data collected by the
measurement.

 A precise measurement distribution will have a low
dispersion of data (hence a small variance), but it might
have a mean value very distant from the real one.

 In order to enhance precision, the most simple way is to
increase the size of the sample data. In fact, as shown
previously, for experimental data the variance decreases
linearly with the number of samples collected.

| C. Bruschini, E. Charbon | 2025

I.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1st ed., 2010, Chap. 1
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9.4.2 Accuracy vs. Precision

| C. Bruschini, E. Charbon | 2025
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9.4.3 Resolution

 The resolution of a measurement is the smallest change in the 
underlying physical quantity that produces a response in the 
measurement. [Wikipedia]

 In case of an ADC (analog-to-digital converter), the resolution is 
given by one bit.

Example: for an oscilloscope with an 8 bits ADC, set at 100 
mV/div (i.e. for a total screen width of 800 mV), the 
resolution of each point collected is given by:

8 bits = 28 different values → 𝑅𝑅𝑅𝑅𝑅𝑅 =
800
256

𝑚𝑚𝑚𝑚 = 3.125 𝑚𝑚𝑚𝑚

| C. Bruschini, E. Charbon | 2025
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Take-home Messages/W9-3

 Law of Large Numbers:

 Concept of i.i.d. random variables

 Mean and Variance

 Central Limit Theorem

 Estimation Theory:

 Examples of estimators, MLE (Maximum Likelihood 
Estimator)

 Example: Positron Emission Tomography ↔ different time-
of-arrival estimators

 Precision, Accuracy, Resolution

| C. Bruschini, E. Charbon | 2025
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Appendix A: Gamma Distribution – Gamma Function

 While the Exponential distribution represents the wait
time before the first success under the conditions of
memorylessness, the gamma distribution represents the
total waiting time for multiple successes (hence it is the
sum of multiple exponential distributions).

 We first define the gamma function as:

Γ 𝑎𝑎 = �
0

∞
𝑥𝑥𝑎𝑎𝑒𝑒−𝑥𝑥

𝑑𝑑𝑥𝑥
𝑥𝑥

, 𝑎𝑎 > 0

 The gamma function has the following properties:

Γ 𝑎𝑎 + 1 = 𝑎𝑎 Γ 𝑎𝑎

Γ 𝑛𝑛 = 𝑛𝑛 − 1 !

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4
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Appendix A: Gamma Distribution (contd.)

 Then, we say that 𝑋𝑋 has a gamma distribution (we will
write 𝑋𝑋~Gamma 𝑎𝑎, 1 ) if:

PDF: 𝑓𝑓𝑋𝑋 𝑥𝑥 =
1

Γ 𝑎𝑎
𝑥𝑥𝑎𝑎𝑒𝑒−𝑥𝑥

1
𝑥𝑥

, 𝑥𝑥 > 0

 From the gamma distribution of 𝑋𝑋~Gamma 𝑎𝑎, 1 , we get,
for 𝜆𝜆 > 0, the more general 𝑌𝑌 = 𝑋𝑋/𝜆𝜆~Gamma 𝑎𝑎, 𝜆𝜆 :

𝑓𝑓𝑌𝑌 𝑦𝑦 = 𝑓𝑓𝑋𝑋 𝑥𝑥
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1

Γ 𝑎𝑎
𝜆𝜆𝑦𝑦 𝑎𝑎𝑒𝑒−𝜆𝜆𝑦𝑦

1
𝜆𝜆𝑦𝑦

𝜆𝜆

hence

PDF: 𝑓𝑓𝑌𝑌 𝑦𝑦 =
1

Γ 𝑎𝑎
𝜆𝜆𝜆𝜆 𝑎𝑎𝑒𝑒−𝜆𝜆𝜆𝜆

1
𝑦𝑦

, 𝑦𝑦 > 0

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4
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Appendix A: Gamma Distribution (contd.)

 From the PDF of the gamma distribution just obtained
𝑌𝑌~Gamma 𝑎𝑎, 𝜆𝜆 , it can be shown that the Gamma is
nothing else but the distribution obtained by summing up
𝑎𝑎 independent exponential distributions. In fact, for
𝑎𝑎 = 1:

PDF: 𝑓𝑓𝑌𝑌 𝑦𝑦 =
1

Γ 𝑎𝑎
𝜆𝜆𝜆𝜆 𝑎𝑎𝑒𝑒−𝜆𝜆𝜆𝜆

1
𝑦𝑦

, 𝑦𝑦 > 0

reduces to

PDF: 𝑓𝑓𝑌𝑌 𝑦𝑦 = 𝜆𝜆𝜆𝜆 𝑒𝑒−𝜆𝜆𝜆𝜆
1
𝑦𝑦

= 𝜆𝜆 𝑒𝑒−𝜆𝜆𝜆𝜆, 𝑦𝑦 > 0

which is the exponential distribution.

 Follows that, let 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 be 𝑛𝑛 i.i.d. Expo 𝜆𝜆 . Then:

𝑌𝑌 = 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛~Gamma 𝑛𝑛, 𝜆𝜆

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4

Gamma(a,1)
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Appendix A: Gamma Distribution (contd.)

 For a 𝑋𝑋~Gamma 𝑎𝑎, 1 , it follows:

Mean: 𝐸𝐸 𝑋𝑋 = �
0

∞ 1
Γ 𝑎𝑎

𝑥𝑥𝑎𝑎+1𝑒𝑒−𝑥𝑥
𝑑𝑑𝑑𝑑
𝑥𝑥

=
Γ 𝑎𝑎 + 1
Γ 𝑎𝑎

= 𝑎𝑎

Second Moment: 𝐸𝐸 𝑋𝑋2 = �
0

∞ 1
Γ 𝑎𝑎

𝑥𝑥𝑎𝑎+2𝑒𝑒−𝑥𝑥
𝑑𝑑𝑑𝑑
𝑥𝑥

=

=
Γ 𝑎𝑎 + 2
Γ 𝑎𝑎

= 𝑎𝑎(𝑎𝑎 + 1)

Variance: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝐸𝐸 𝑋𝑋2 − 𝐸𝐸 𝑋𝑋 2 =

= 𝑎𝑎 𝑎𝑎 + 1 − 𝑎𝑎2 = 𝑎𝑎

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4

Gamma(a,1)
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Appendix A: Gamma Distribution (contd.)

 For the more general gamma distribution 
𝑌𝑌 = 𝑋𝑋/𝜆𝜆~Gamma 𝑎𝑎, 𝜆𝜆 , by simple transformation, we 
obtain:

Mean: 𝐸𝐸 𝑌𝑌 =
1
𝜆𝜆
𝐸𝐸 𝑋𝑋 =

𝑎𝑎
𝜆𝜆

Second Moment: 𝐸𝐸 𝑌𝑌2 =
1
𝜆𝜆2
𝐸𝐸 𝑋𝑋 =

𝑎𝑎 (𝑎𝑎 + 1)
𝜆𝜆2

Variance: 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌 =
1
𝜆𝜆2
𝑉𝑉𝑉𝑉𝑉𝑉{𝑋𝑋} =

𝑎𝑎
𝜆𝜆2

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4

Gamma(a,λ)

-> calculate mean/variance for some examples
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Appendix A: Gamma Distribution (contd.)

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4

Gamma(a,λ)

-> calculate mean/variance 
for some examples

Mean:
𝑎𝑎
𝜆𝜆

Variance:
𝑎𝑎
𝜆𝜆2
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Appendix B: Poisson Process

 Definition: a sequence of arrivals in continuous time with rate 𝜆𝜆 is a (1D) Poisson process with rate 
𝜆𝜆 if the following two conditions hold:

1) The number of arrivals that occur in an interval of length 𝑡𝑡 is a Pois 𝜆𝜆𝑡𝑡 RV.

2) The numbers of arrivals that occur in disjoint intervals – e.g. (0,10), [10,12) and [15,∞) –
are independent of each other. 

 If 𝑇𝑇𝑗𝑗 is the time of the 𝑗𝑗-th arrival, 𝑁𝑁 𝑡𝑡 is the number of events up to the time 𝑡𝑡, follows:

𝑃𝑃 𝑇𝑇1 > 𝑡𝑡 = 𝑃𝑃 𝑁𝑁 𝑡𝑡 = 0 = 𝑒𝑒−𝜆𝜆𝑡𝑡

so 𝑇𝑇1 has an Exponential distribution (𝑇𝑇1~Expo 𝜆𝜆 ), hence 𝑇𝑇𝑗𝑗, being the sum of 𝑗𝑗 i.i.d. exponentials, 
is a Gamma distribution (𝑇𝑇𝑗𝑗~Gamma 𝑗𝑗, 𝜆𝜆 ), and the interarrival times are i.i.d. Expo 𝜆𝜆 RVs. 

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.6, 13
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Appendix B: Poisson Process

 NB: i.i.d. = independent and identically distributed Random Variables, have the same PDF and are 
all mutually independent

 “Confirmation” that the Exponential distribution is closely connected to the Poisson distribution!

 Examples of Poisson processes:
 1D: cars passing by a highway checkpoint; 
 2D: flowers in a meadow; 
 3D: stars in a region of the galaxy.”

Dark Counts and “real” detections in a SPAD sensor

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 13
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Appendix B: Poisson Process

 Timeline: 0, +∞ but it could also be
−∞, +∞

 To generate 𝑛𝑛 arrivals from a Poisson process 
with rate 𝜆𝜆:

1. Generate 𝑛𝑛 i.i.d. Expo(𝜆𝜆) RVs: 
𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛

2. For 𝑗𝑗 = 1, 2, … ,𝑛𝑛 set 𝑇𝑇𝑗𝑗 = 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑗𝑗

 Then we can take the 𝑇𝑇1, … ,𝑇𝑇𝑛𝑛 to be the arrival 
times.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 13

Simulate Poisson Processes in 1D

Note: interarrival times are i.i.d., but the arrivals
are not evenly spaced -> there is a lot of 
variability in the interarrival times, which 
produces Poisson clumping
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Appendix B: Poisson Process

 A Poisson Process has the following three properties:

1. Conditioning: let 𝑁𝑁 𝑡𝑡 , 𝑡𝑡 > 0 be a Poisson 
Process with rate 𝜆𝜆 and 𝑡𝑡2 > 𝑡𝑡1. Then the 
conditional distribution stands:

𝑁𝑁 𝑡𝑡1 |𝑁𝑁 𝑡𝑡2 = 𝑛𝑛~Bin 𝑛𝑛, 𝑡𝑡1
𝑡𝑡2

2. Superposition: let 𝑁𝑁1 𝑡𝑡 , 𝑡𝑡 > 0 and 
𝑁𝑁2 𝑡𝑡 , 𝑡𝑡 > 0 be two independent Poisson 

Processes with rates 𝜆𝜆1 and 𝜆𝜆2. Then the 
combined process 𝑁𝑁 𝑡𝑡 = 𝑁𝑁1 𝑡𝑡 + 𝑁𝑁2 𝑡𝑡 is a 
Poisson process with rate 𝜆𝜆1 + 𝜆𝜆2.

| C. Bruschini, E. Charbon | 2025

Conditioning

Superposition

Thinning

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 13
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Appendix B: Poisson Process

 A Poisson Process has the following three properties:

3. Thinning: let 𝑁𝑁 𝑡𝑡 , 𝑡𝑡 > 0 be a Poisson 
Process with rate 𝜆𝜆, and classify each event at 
the arrival as either type-1 events (with 
probability 𝑝𝑝) or type-2 events (with 
probability 1 − 𝑝𝑝), independently. Then the 
type-1 events form a Poisson process with 
rate 𝜆𝜆𝑝𝑝, the type-2 events form a Poisson 
process with rate 𝜆𝜆(1 − 𝑝𝑝) and they are 
independent.

| C. Bruschini, E. Charbon | 2025

Conditioning

Superposition

Thinning

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 13
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