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Reference Books (Weeks 8&9)

J.K. Blitzstein, J. Hwang, /ntroduction to Probability, 1t ed., 2015

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3™ ed., 1991
S.M. Ross, Introduction to Probability Models, 10t ed., 2009
|.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1%t ed., 2010

G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for Experimenters, 2" ed., 2005

J.R. Taylor, An Introduction to Error Analysis, 2" ed., 1997
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Week 8 Summary @

8.1 Introduction to Probability: P{A}, P{A|B} — Bayes' rule, Law of Total Prob. (LOTP),

Independent Variables

8.2 Random Variables: discrete/continuous RV X and its distribution expressed as
PMF px(x) / PDF fx(x) < CDF Fx(x)

Examples: Binomial: Bin(n, p), Poisson: X~Pois(A1), Uniform: U~Unif(a, b), Normal (Gaussian):

X~N(u,d?), Exponential: X~Expo(1)

8.3 Moments: RV X: expected value (mean) E{X}, variance Var{X} = a2 /standard
deviation SD{X} = \/Var{X} = o0 - n-th moment E{X™}, central moment /standardized moment

and their properties « moment generating function (MGF) ¢p(t) = E{e'*}
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Week 8 Summary @

8.4 Covariance and Correlation:

Multiple RVs = Multivariate distributions (8.1, 8.2 =): joint = marginal, = conditional, Independent

distributions

Covariance Cov{X,Y}— Corr{X,Y} (unitless version)

Variance of multivariate distributions:
1. Var{X+Y}=Var{X}+ Var{Y}+ 2Cov{X,Y}

2. Var{Xy + -+ Xp} =Var{X;} + -+ Var{X,} + 2X,; Cov{X;, X}
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9.0.1 Uniform Distribution

= Uniform random variable in (a, b): completely random number between
aandb

-> PDF constant over chosen interval

= Uniform distribution U~Unif(a, b) in the interval (a, b) if:

1 .
0 otherwise
(0 ifx<a
X —a
CDF: FU(x)=<b_a ifa<x<b
1 ifx=>»b

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 5.2
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9.0.1 Uniform Distribution (contd.)

= Probability is inversely proportional to length.

=  Fvenin asub-interval, we still have a uniform distribution

M 'EU—jb 1d_a+b
ean: {}—axb_a x=—
b 1 1b3 —a3
Second Order Moment: E{U?} = j x? dx = ———
e b—a 3 b—a
1b3—a® [a+b)
Variancex: Var{U} = E{U?} - (E{U})* == ———— =
3 b—a 2
_(b— a)?
12
JK. Blitzstein, J. Hwang, Introduction to Probability, 1 ed., 2015, Chap. 5.2 *Using 8.3.4 (W8)
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9.0.2 Standard Gaussian Distribution

= Gaussian (or Normal) distribution:
= well-known continuous distribution with a bell-shaped PDF

= widely used in statistics because of the central limit theorem (see next

section)

= Standard Gaussian Z~N(0,1):

1 2
PDF: ¢(z) = —e%/?, —00 <z < 00

V2m

VA VA

CDF: ®(2) =j g0(t)dt=j Le‘tz/2 dt
—00 —o V2T

No closed form available for the CDF. However, note that:

j e~ 212 dz =21

J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 5.4
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9.0.2 Standard Gaussian Distribution (contd.)

Standard Gaussian PDF/CDF

"  Properties: symmetry of PDF, symmetry of tail areas, of Z and —Z2 9
Mean: E{Z}=L ooZe‘ZZ/2 dz=0 éf
V21 J °
(2} = Bz} - B2 == [ 2267
Variance x: Var{iZ} = FE{Z°}— (E{Z =—f z%e 2 dz =
V2T J_o =

<5

=)

N——
0.8

- 2 (e [ F ar) = Lo
2T 0 0 2T

©
w o
=)
O
<
o
(integrating by parts) o
o
o
(@) T
-3 -2 -1 0 1 2 3
J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 5.4 *Using 8.3.3 LOTUS (Wg) X
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9.0

.2 Gaussian Distribution

J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 5.4

daqua

Gaussian (or Normal) distribution with any mean u and variance o
location-scale transformation of the standard Normal

X=u+oz

X~N(u,02)

Mean*: E{X}=FE{u+o0Z}=E{u}+oE{Z}=u

Variancexx:  Var{X} =Var{u+ oZ} =Var{cZ} = 6*Var{Z} = o?

Standardisation process (from X back to Z):

for X~ (u, 0%),

| C. Bruschini, E. Charbon | 2025

X—u

~N(0,1)

PDF
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*Using linearity property (W8)

** Using 8.3.4 (W8)
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9.0.2 Gaussian Distribution (contd.) O

Gaussian PDF/CDF

= General Gaussian CDF F(x) and PDF f(x):

0.5

0.4

0.3

CDF:  F(x) = cb(x;“)

PDF

0.2

—
o

x—/,t>1
o /o -

PDF: f(x) = ga(

T L] LI T L] LI T
u-30 p-20 U-0 I u+to p+20 pt+3o
X

1.0

" Proof:

0.8

0.6

F(x)=P{X§x}=P{X;“sx;“}= cb(x;“)

=g (5 =055 e (478

J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 5.4

CDF

04

0.2

0.0

T T
p-30 p-20 U-0 I uto p+20 pt+3o
X

aqua | C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics Slide 12 =Pr-L



9.0.2 Gaussian Distribution (contd.)

= |Important properties —if X~N (u, 02),

P{|X —u| <o} = 0.68
P{|X — u|l < 20} = 0.95
P{|X — u| < 30} = 0.997
Full Width Half Maximum (FWHM) = P{|X — u| < 1.1750}

FWHM = 2v2In20 = 2.355 ¢

J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 5.4
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9.0.2 Gaussian Distribution — Example 1

Example of complete PET

detection module Scintillating crystal
(LYSO)

scintillator crystal

gamma Spot Spatial Position (X;Y)

photon

3

Photons

Pulse Arrival Time T

scintillation
event

i

0 Time
s ot T
£ mp 5
. Pulse Energy
photosensor &
—— Time
~200 ns
Time

SINGLE
PHOTON
AVALANCHE
DIODE
NETHWORKG

Silicon photomultiplier
(SiPM) tile (example: onsemi)

R. Walker et al., 1ISW, 2013
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9.0.2 Gaussian Distribution — Example 1 Simplified experimental set-up

Crystal
___ 3 12 of maximum !ﬁ‘ FWHM=277ps / “Na
2 { \ _
(e ii \ ® r|ght
= i’ N
8 2.5 l I\ Time \ Time
/
Hc—) 1/10 of maximum FWTM=929ps NINO Sina NINO
‘q—) two overlapping ~‘i\
O 2+ Gaussians \ [
E A1 \’— ..............................................
= o W 74
Z —;i \u ! //(:lefge/l// ————
9 1.5 /100 of Pulse width 1
o ‘f [* / //\
Charge 2
. ST
-1000  -500 0 500 1000 Pulse width 2
A T [pS] - Delay
Experimental results See also
(AT = Coincidence Time Resolution = T,-T,) slide 27

F. Gramuglia, EPFL Thése 8720 (2022).

S. Gundacker et al., Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission, PMB 65 (2020).

S. Gundacker et al., Time of flight positron emission tomography towards 100ps resolution with L(Y)SO: an experimental and theoretical analysis, JINST 8 (2013).
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9.0.2 Gaussian Distribution — Example 2 | BLUE laser | RED laser
<105 10 'F A\ (405 nm)
6 | r Y . § . L . . L . E
; 16° -
e IO " | :
< . B \——seaDjittertail {exp)— “
“ : = . T4 10 —
w© 2L E 4 \( a .| =——Excess bias: 3V
g o 10 L A) — Excess bias: 7V — Excess bias: 7V
:3 : = | ——Excess bias: 11V — Excess bias: 11V
2t NS - 0 T L O
. ) e Time (200 ps/div) Time (200 ps/div)
;4 e T G 22 24 26 28 30 (2) (b)
J Photon Arrival Time [ns] B) Rediatlan )

026‘ 22 24 26 28 30

N+ Cathode \ P+ Anode
Photon Arrival Time [ns]

Deep N-well-1

(A) Non-Gaussian behavior — exponential tail — of
the SPADs timing uncertainty (jitter noise) due to
carrier diffusion -> (B) revised junction design

C. Veerappan & E. Charbon, A Low Dark Count p-i-n Diode Based SPAD in CMQOS Technology, IEEE TED 63 (2016).

Substrate

A. Ulku et al., A 512x512 SPAD Image Sensor With Integrated Gating for Widefield FLIM, IEEE JSTQE 25 (2019).

C. Niclass et al., A 128x128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. IEEE JSSC 43 (2008).
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9.0.3 Binomial Distribution

Bin(10, 1/2) Bin(10, 1/8)
= Suppose that n independent Bernoulli trials are performed. 3 ST
Let p be the probability of success, 1 — p the probability of .|
failure, X (RV) the number of successes. ) . Il

* The distribution of X is called binomial distribution Bin(n, p)
with parameters n and p if:

0
o
—e
o
- o

+—e

o
]

0.1
o

0.0

0.0

n Bin(100, 0.03 Bin(9, 4/5
PMF:  P{X =k} = (k) p(1—p)"~ : — : —
- LL =] N LL [}
Mean E{X}=Zk(k)pk(1 Pk =np " =
W ) |
= | I ? * . . o - ? I

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 3.3
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9.0.3 Binomial Distribution

0.3 0.4

PMF
02

0.1

0.0

PMF
0.2 03 0.4

0.1

Q
=)

Bin(10, 1/2)
[ ]
® ®
— 2
0 4 6 8 10
X
Bin(100, 0.03)
® ®
[ ]
| [e, .
0 2 4 6 8 10

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 9.3 *
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9.0.4 Poisson Distribution

= Definition: a random variable X~Pois(4) has a Poisson
distribution with parameter A if its PMF:

Pois(2) PMF

1.0

HEES

T
1 2 3 4 5 6

Pois(5) PMF

e A)K :
PMF:  PX=k}=—7>—, k=012.. K
0o T E

Mean: E{X}=e™* kﬁ=l S_T

k=0 3
Variance:  Var{X} = E{X%} — (E{X})? = i
=21+ -22=2 =
— )k . s

NB: Taylor series Zk_ L

J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 4.7
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9.0.4 Poisson Distribution (contd.)

= The Poisson distribution has the following properties:

1.

If X~Pois(4;) and Y~Pois(1,) and X and Y are
independent, then the distribution of

X + Y~Pois(1; + 4,)

If X~Pois(4;) and Y~Pois(1,) and X and Y are
independent, then the conditional distribution of X
givenX +Y =nis:

P(X = k|X +Y = n)~Bin(n, 1,/ (A; + 1,))

J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 4.7

daqua
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0.0
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0.0

Pois(2) PMF

Pois(5) PMF

CDF

CDF

04 06 08 1.0

02

0.0

02 0.4 086 0.8

0.0

Pois(2) CDF
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Poisson Distribution vs. Light Sources

= Non-classical light: Sub-Poissonian -> antibunched (anticorrelated)

Laser Light

= Coherent light source (Laser): Poissonian, random spacing (uncorrelated)

.14

0.12

0.1

However, in practice it defaults to Gaussian due to the very low ;..

coherence time, O(ps), and the corresponding experimental difficulties \i\ -
Experimentally one can use pseudothermal light*. hi""-‘._ﬁ
https://demonstrations.wolfram.com/PhotonNumberDistributions/ S

0 +— T T T T —

l‘_TC_’l 0 5 10 15 20 25 30

1 | Photon Counts
©0O0l0 0 000 00 000 0 0 0 00 0 O O

1 1
: Q0 : O O OO0 O @0 Q0 O @) O O O 0O O O By Ajbura - Vectorised version of File:Photon
I I bunching.png, CC BY-SA 4.0,
: : https://commons.wikimedia.org/w/index.php?curid
1000, @ o0 O O 0000 O o0 0[00) oo =73299604
| |
t

Photon detections as function of time for a) antibunched, b) random, and ¢) bunched light

*E.g. scattering of a laser beam on a

http://physics.gu.se/~tfkhj/lecture_X_differential _transmission-2.pdf . .
rotating ground glass disc

https://www.stmarys-ca.edu/sites/default/files/attachments/files/GriderJordanFinalReport_0.pdf
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https://demonstrations.wolfram.com/PhotonNumberDistributions/

Poisson Distribution vs. Light Sources

_ g§
n = average photon number Sh
= Non-classical light: Sub-Poissonian | e

o<Vn

» Coherent light source (Laser): Poissonian
S n

n"  _
P(n) = Fe‘", o=vn

For large photon numbers, the relative fluctuations o/ tend to O

ooooo

Pseudothermal light source

Advanced Lab Course (F-Praktikum), Exp. 45, Photon Statistics, v. Aug. 21 2017 T. Stagner et al., Step-by-step guide to reduce spatial
http://physics.gu.se/~tfkhj/lecture_X_differential_transmission-2.pdf Coherence of laser light using a rotating ground glass

diffuser, OSA Applied Optics 56 (2017).
https://www.stmarys-ca.edu/sites/default/files/attachments/files/GriderJordanFinalReport_0.pdf
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9.0.5 Exponential Distribution

= A continuous variable Y ~Expo(4) has an Exponential distribution with

parameter A if:

PDF:  fy(y) = e, y >0
CDF: Fy(y)=1—e™", y >0

= |f we start from X~Expo(1):

(0.0]

E{X}=] xe *dx =1

0

E{X2}=j xle X dx =2
0

Var{X} = E{X?} — (E{X})? = 1

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 5.5
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9.0.5 Exponential Distribution (contd.)

Expo(1)

= |ngeneral, forY = X/A~Expo(A) (scaling), we get:

1 1
Mean: E{Y}= IE{X} =7

PDF
00 02 04 06 08 10 12

1 1
Variance: Var{Y} = TzVW{X} — P

= Recap: «An Expo(A) RV represents the waiting time for the first success 00 05 10 15 20 25 30
in continuous time; the parameter A can be interpreted as the rate at

which successes arrive.”

1.0

0.8

= Memoryless property: «conditional on our having waited a certain
amount of time (s) without success, the distribution of the remaining
wait time (t) is exactly the same as if we hadn’t waited at all.»

Memoryless: P{Y =s+t|Y = s} =P{Y >t} @

CDF
0.4 0.6

0.2

0.0

00 05 10 15 20 25 3.0
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 5.5 X
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9.0.5 Exponential Distribution (contd.)

= emoryless property: «conditional on our having waited a certain
amount of time (s) without success, the distribution of the remaining
wait time (t) is exactly the same as if we hadn’t waited at all.»
Memoryless: P{Y >s+t|Y = s} =P{Y >t}
e.g.P{Y =40|Y = 30} = P{Y = 10}

e.g.P{Y = 70|Y = 60} = P{Y > 10}

PDF:  fy(y) =2e™,y, =y, + At

1e~Ay2
fr(v2) _ € = e~ AAt = constant
fr(y1) e~

e.g fr(y =4271) _ fry,=2271) — o1 = constant
T =321 /O =1271)

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 5.5
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9.0.5 Exponential Distribution — Example 1 & 2

Radioactive decay

= Universal law of radioactive decay:
* A nucleus has “no memory”
* A nucleus does not age with the passage of time
-> a nucleus is equally likely to decay at any instant in time
-> constant decay probability

dN )
Decay Law: = —AN = N(t) = Nje™

= NB: The number of decays in a given time interval in a
radioactive sample is Poisson distributed...

Fluorescence lifetime  [Si] = [Silee™"

S1= concentration of excited state molecules @

['= decay rate = inverse of fluorescence lifetime = average length of time

to decay from one state to another
EN Wikipedia Radioactive decay / Fluorescence
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9.0.5 Exponential Distribution — Example 3

stop detector of the TCSPC setup.

2.5 r1=45.8ns R1=8.2% .
w
= T2:3651'15 R2:92%
S 2
[T
O -
p - \ b
g 1 5 ‘:,'.7 l-‘ '.- el - -
E - P o "\_':“,.. it x _. - .-
= 1n ) -
= . " ) e — i
E’ 1H TR e e e
i 0.5 E 1 L 1 1 1 1
= 200 400 600 800 1000 1200 1400
=z 2 &L 1 ' Juld ¥ ' ki
< 0 | il
m _2 - 1 1 1 ! 1 ]
o 200 400 600 800 1000 1200 1400
A T [ns]

w Trise_gpS
I prompt/scintillation = 0.172% f
¥ {i
A S
Oé 77777777 . 1?5 106 107 108 1Q9 1j0
M _ARADNSM L s AN LD S
i A <~ T L AV uvr,J" ' V v Ay
04 105 106 107 108 109 110 (
AT [ns]

Figure 10. Scintillation decay and rise time of BGO measured with a time correlated single photon counting (TCSPC) setup using
511 keV annihilation gammas (Gundacker ef al 2016b). The figure on the right hand side shows a pronounced Cherenkov peak at
the onset of the scintillation emission with a relative abundance of 0.172% compared to the total amount of photons detected by the

-ast vs.
'slow”
cintillation
byhotons in a
eavy
cintillating
rystal

“Physical experiments are imprecise a

nd generate

See also slide 14

N

— general study of prompt photons to achieve 10 ps in TOF-PET. IOP Phys. Med. Biol. 61 2802—-37
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errors handled by statistical methods.”

) Gundacker S, Auffray E, Pauwels K and Lecog P Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a
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9.0.6 Gamma Distribution @

Gamma(a,1) Gamma(a, A)

Gamma(3, 1) Gamma(3, 0.5)

0.2
0.10

PDF
PDF

= LetXq,X5,...,X,, beni.id. Expo(A4). Then:

0.1
0.05

Y=X{+ -+ X,~Gamma(n, 1)

0.0
0.00

o
[42]
—_
o
—
a
N
o
o
[42]
—_
o
—_
a
n
o

Gamma(5, 0.5)

= The Gamma is nothing else but the distribution obtained Gamma(10, 1)
by summing up n independent exponential distributions.

0.10
0.10

PDF
PDF
0.05

0.05

0.00
0.00

o
(&3]
—_
o
—
4]
n
o
o
(&3]
—_
o
—_
4]
n
o

J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 8.4
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9.0.6 Gamma Distribution (contd.)

&

Gamma(a,1) Gamma(a, A)
Gamma(3, 1) Gamma(3, 0.5)
" For the more general gamma distribution
Y = X/A~Gamma(a, 1), by simple transformation, we o 2
obtain: . .
1 a
Mean: EiY}==-EXj=— .
r}=-EX} =~ . | s .
a a + 1 amma amma
Second Moment:  E{Y?} = E{ } = (/1 ) cemmat®® v o camman. 2
_ 1 a ”

Variance: Var{Y} = Var{X }=—= 5 58

-> See Appendix A for details

J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 8.4

aqua
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-> calculate mean/variance for some examples
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Take-home Messages/W9-1

I<—’[C—>:

1
" Random Variables (RV5s): @QOl0 O 000 00 00O OO 0000 020

1
. . . . . . . 100 10 O Q0O ©O 00 O @) © 0 o o © o
" Distributions: Uniform, Gaussian, Binomial T

o ‘ ‘ 000} O 000 O 00 O 00 0 00
= Distributions: Poisson < Exponential S t
Photon detections as function of time for a) antibunched, b) random, and ¢) bunched light
... and their PDF, CDF, Mean, Variance
N
: 31 .
= Practical examples! 5. 2 , Non-radiative
1 1 thransmon
= Scintillation light (two crystals in coincidence) — combination of 0 $
distributions <> experimental set-up
.. .. . . . L. . . Absorption
= Timing jitter — combination of distributions <> experimental set- P
u
P Fluorescence
= Poisson Distribution vs. Light Sources >
@
= Fluorescence lifetime & exponential decay a3
So 2 v
= Scintillation light (one single crystal) > experimental set-up 1
0
Ground State
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Probability distributions — Connections & the Big Picture

Poisson process
conjugacy

Gamma
(Exponential,
Chi-Square)

Student-t
(Cauchy)

Binomial
(Bernoulli)

conditioning conjugacy

Beta
(Uniform)

bank—post office

Negative
Binomial
(Geometric)

AR K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Cover page.
aqua | C. Bruschini, E. Charbon | 2025

Metrology: Elements of Statistics

Hypergeometric

conditioning
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9.1.1 Random Process P

= A Random (or stochastic) Process (RP) is a time-varying function that
assigns the outcome of a random experiment to each time instant X (t)

Example: a current fluctuating due to thermal noise (-> Week 10),
the growth of a bacterial population, the movement of a gas
molecule [Wikipedia Stochastic Process]

=  For fixed t, a Random Process is a Random Variable

» A Random Process can therefore be viewed as a collection of an infinite
number of Random Variables. Given that X; = X (¢t;): original usloader wa

Sullivan.t.j at English
Wikipedia. — 3D Brownian
. motion process. This
]Olnt PDF: fX(Xll Xz, ee ) Xn, tl' tz, . tn) mathematical image was
[LL] created with Mathematica.,
CCBY-SA 3.0,
https://commons.wikimedia.

= A Random Process can be either continuous or discrete org/w/index.php?curid=224
9027

H. Bilgekul, Slides for the course “EE-461 Communication System 11”7, EMU F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU
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9.1.1 Random Process — Example

Sample Extension to all possible outcomes of the underlying random
S experiment -> Ensemble of signals (= set of all possible

710 | sample functions)

|
|
7 xl(fk) |
0 | Outcome of the
first trial of
the experiment
E | i
: :
s x2l0) o) | . >
e : | Time
QOutcome of the
m -dew@v | second trial of
b 0 | the experiment
I |
e I
x, (1) |
o alb)
P \ Outcome of the
L nth trial of
_T 0 e | +T  the experiment
|

[ —2
H. Bilgekul, Slides for the course “EE-461 Communication System 11”7, EMU F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU
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9.1.1 Random Process — Example

= Example: Noise is generally modeled as a random process, i.e. a collection
of random variables, one for each time instant t in interval ]-oo,+oo]

Ll AL Wl AR A AT
R a e RN TURHU T e

4

<l\»

il

d

Fixed t: Random Process becomes a Random Variable

E. Charbon, “Image Sensors — ET 4390 Course Slides”, Delft 2016
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9.1.1 Random Process (contd.) — Characterization/1

= A Random Process is characterized by the same functions already explained for
RVs, but which now depend on ¢, i.e.:

CDF:  Fx(x,t) = P{X(t) < x} X (t)=random variable at time t
dFy(x,t)
PDF: ,t) =
fx(x,t) dx

Mean: my(t) = X(t) = E{X(t)} = joox fx(x,t) dx

Ensemble
averages

Second Order Moment:  X2(t) = E{X?(t)} = j x? fy(x,t) dx

0
2 2
Variance: Var{X(t)}=E {(X(t) — mX(t)) } = j (x — mX(t)) fx(x,t) dx v
H. Bilgekul, Slides for the course “EE-461 Communication System II", EMU F. Farahmand,gli%oes for the course “CES 540 Digital Communication”, Ch. 6, SSU
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9.1.1 Random Process (contd.) — Characterization/2

= However, in order to characterize a RP, we need to introduce two more  X(t,)= random variable at time ¢,
functions, e.g. to indicate how rapidly a RP changes in time: X (t,)=random variable at time t,

Auto — covariance: CXX(tlr tz) — COU{X(tl),X(tZ)} NB: in general, the autocorrelation
is the correlation of the signal with

a delayed copy of itself

Auto — correlation: Kxx(ty,t;) = E{X(t;) - X(t2)} (similarity between observations
as a function of the time lag
NB:  Cxx(ty,tp) = E{[X(t1) — mx(t)][X (&) — mx(t,)]} = bet.w.een-thfm) o
= Kyx(t1,t3) — my(t{)mx(t,) [Wikipedia “autocorrelation”]

Cross-correlation: same but
" |nasimilar way we can also define: between two series

Cross — covariance: Cxy (81, t2) = Cov{X(ty), Y (L)} NB: extended here to two RPs X and Y

Cross — correlation: Kyy(t,t,) = E{X(ty) - Y(t,)}

H. Bilgekul, Slides for the course “EE-461 Communication System 11”7, EMU F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU
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9.1.1 Random Process (contd.) — Example, non-stationary

) 1M T | I 1 | T I I T
s Pixel #1
é 500k
5 “ | 1 | 1
0 20 40 60 80 100 120 140 160 180 200
Time (S) x 10°
5( )k T T v T
T ' ol Pixel #2 ‘ ‘ '
=
e
5 (} | | | | l - | - | . | | - -
0 20 40 60 80 100 120 140 160 180 200
Time (S) 103
—  10M T T T T T T T T T
ﬁ Pixel #3
n&d" D T e b i e e e e e i e
5‘ “ | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Time (S) x 10°

M. A. Karami et al., Random Telegraph Signal in Single-Photon Avalanche Diodes, International Image Sensor Workshop, Bergen, 2009
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9.1.2 Stationary Random Process

= \We characterize the RP on how their statistical properties change in
time. If they do not change, we call the RP stationary. Hence:

Random Processes

(e £) = fx () Wide-sense stationary
7 00 Strict-sense stationary
my(t) = X(@) = E{X(£)} = J % o (o t) do = iy
Ensemble o
averages ?2?

Var{x(t)} = E{(x(¢) - mX(t))Z} - j (x — my () fe(x, ) dx = o2

!

= Weaker form: in Wide-Sense Stationary RPs, in addition to a constant
mean, the autocorrelation function only depends on the time difference,

but not on the absolute position in time: @ WSS random process

does not drift with
Kxx(t, t + T) = KX)((T) (Or eqUivalently KXX(tll tz) = Kxx(tz — tl)) time

H. Bilgekul, Slides for the course “EE-461 Communication System 11”7, EMU F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU
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9.1.2 Stationary Random Process — Example

fx(x, t) = fx(x)
my(t) = X(t) = uy

Var{X(t)} = ¢?

—~
2
>
S
=
=3
N
N
—~
=
AN
c
3
\
N,
=
%
=4

E. Charbon, “Image Sensors — ET 4390 Course Slides”, Delft 2016
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9.1.2 Stationary Random Process (contd.)

= For a Wide-sense Stationary Random Process X (t), the autocorrelation function has the following

properties:

1. Kxx(ty,t1) = Kxx(ta, t3) = Kxx(0) = E{X*()} = X2(t) = 0 (= Kxx (0) = total power

of random signal X (t), does not change in time)

2. Kxx(1) = Kxx(—7)

3.  lim Kyyx(7) = llm E{X(t) X(t+1)} =

|T| >0

= E{X(®)}E{X(t + 1)} = X(t) ? (example: average or DC power of random signal X(t))

Kxx (1)
4. |Kyx(1)| < |Kyx(0)] forall T

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU
H. Bilgekul, Slides for the course “EE-461 Communication System I1”, EMU

Slowly fluctuating
random process

Rapidly fluctuating
random process
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9.1.3 Ergodicity

Random Processes

Wide-sense stationary

= “ARandom Process is ergodic if any sample function of the process takes Strict-sense stationary
all possible values in time with the same relative frequency that an
ensemble will take at any given instant”. Basically, its statistical properties _
can be deduced from a single, sufficiently long, random sample. Ergodic
N [Wikipedia] Hence:
_ 1 (7/2
X(t) =E{X(t)} = lim —j x(t) dt = (X(t))
=T ) 1/, —
Ensemble function Time average
1 (T/2 “The ergodic hypothesis is that
v Kxx(@) =E{X@)-X(t+1)}= Jim T j x(t) x*(t — 1) dt = Kxx(t)  personal experience over time of
~T/2 a single individual reflects the
current statistics of the general
where (X (t)) is the time-average mean of the RP X(t) and Ky x (1) is the population.”
time-average autocorrelation function. (. Vardi)

H. Bilgekul, Slides for the course “EE-461 Communication System 11”7, EMU F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU
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Take-home Messages/W9-2

" Random Process:

Time
= Definition, Ensemble vs. Time

x(0) |

|

= CDF, PDF, Moments, Autocorrelation . i
A LAl A M
* Wide-sense & strict-sense stationary | e epenmen

|

.xg(r) I

|

xo(1)

: |
Qutcome of the
W second trial of

" Ergodicity Random Processes

. . | .
Wide-sense stationary ° | the experiment
. . . I
Strict-sense stationary : : | .
x,(0) I ’
Xyt :
: %l Qutcome of the
nth trial of
0 i) +T"  the experiment

Ergodic

[
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9.2.1 Law of Large Numbers

= |Law of large numbers: describes the behavior of the sample mean of
i.i.d. random variables as the sample size grows

= Assume i.i.d. X1, X5, X3, ... with finite mean u and finite variance ¢ NB: i.i.d. = independent and

identically distributed Random
Variables, have the same PDF and

Sample Mean: X, = s +n n are all mutually independent

= X, itself a random variable with

Mean:  E(Xq} = E(X; + - Xo} = = (B} + 4 EQX,)) = 1

_ 1
Variance: Var{X,} = ﬁVar{Xl + - X}
2

1 o
=3 (Var{X} + -+ Var{X,}) = -

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 10.2
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9.2.1 Law of Large Numbers (contd.)

= Law of Large Numbers: as n grows, the sample mean X,, converges to
the true mean u

= Essential for simulations, statistics, etc. — implicitely used when we use:

1) the proportion of times that something happened as an approximation
to its probability,

2) the average value in the replications of some quantity to approximate its
theoretical average.

Example: improvement in LiDAR ranging precision...

..when accumulating timing measurements, as 1/n @

running proportion of Heads

0 50 100 150 200 250 300
| J.K. Blitzstein, J. Hwang, Introduction to Probability, ed., , Chap. 10. numboer of tosses
L] J.x. Bli in, J. H Introducti Probability, 1%t ed., 2015, Chap. 10.2 ber of t
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9.2.2 Central Limit Theorem

= |aw of Large Numbers: as n grows, the sample mean X,, converges to
the true mean u

But with which distribution? @

Sum of a large number of i.i.d. random variables has an approximately
Gaussian (normal distribution),

= regardless of the distribution of the individual RVs (could be
anything!)
= very weak assumptions.

X —
Asn — oo, ﬁ( "G “>~N(0,1)

(i.e. the CDF of the |.h.s. approaches @, the CDF of the standard
Gaussian distribution)

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 10.3
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9.2.2 Central Limit Theorem (contd.)

* |n other words: start with independent RVs from almost any distribution, discrete or continuous,
-> add them up
-> distribution of the resulting RV has a Gaussian shape!

= The CLT is an asymptotic result. Approximation: for large n

Jn (X_no-_ 'u) - N(0,1)

= NB: The distribution of the X is still relevant, e.g. if highly skewed or multimodal, n might need to
be very large before the Gaussian approximation becomes accurate.

= Conversely, if the X; are already i.i.d. Normals (Gaussian), the distribution of X,, is exactly
N(,u, “Z/n) for all n.

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, ed., , Chap. 10.
L] J.x. Bli in, J. H Introducti Probability, 1%t ed., 2015, Chap. 10.3
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9.2.2 Central Limit Theorem - Example

Starting
distribution

Bin(10, 0.9)

Pois(2)

Expo(l)

Beta(0.8, 0.8)

0.0 0.4 0.8 0.0
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 10.3

n=1

ol

|
5 6 7 9 10

M
lhh_

| N I B R B

aqua | C. Bruschini, E. Charbon | 2025
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Al

8.5 80 85 9

1.0

n =30

15

11
0 95 100

0 25 30

8.6

n =100

Histograms of the
distribution of X,
for different
starting
distributions of the
Xj and increasing

values of n.

Nothing else than

i
ﬂ]hL

N

/ Gamma(n,1)

rr1r 1 1 1 —r r 1 1

00 05 10 15 20 0.6 .0 1.4

—r 1 1T T 1 —rt T 1 1 71 1 1T 1
0.4 0.8 03 04 05 06 07 0.40 0.50 0.60
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9.2.2 Central Limit Theorem - Example

= Poisson convergence to Gaussian: if
Y~Pois(n)

we can consider Y as a sum of n i.i.d. Pois(1) RVs.

Forlargen:Y - N (n,n)

—@ Spatial Photon Count Distribution

10000 | % Poisson Fit Points
7500 ¢

5000 ¢

Population

2500}

0
0O 10 20 30 40 50 60

Photon Count
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 10.3
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9.3 Elements of Estimation Theory

=  Estimation theory has the purpose to solve one problem: given a set of data
{x1,%5, ..., xN_1}
which depends on an unknown parameter vector 8, determine an estimator
6 = g(xy,Xp, e, Xn—1)

where g is some function.

" |n other words, how do we use collected data to estimate unknown parameters of a
distribution?

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 6.3
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9.3 Elements of Estimation Theory (contd.)

" |ngeneral, if we assume that @ is deterministic, we will have a classical
estimation problem. It can be solved in the following ways, and many
more:

1. Least Squares Estimator (LSE)
2. Minimum Variance Unbiased Estimator (MVU)
3. Maximum Likelihood Estimator (MLE) @

4. Best Linear Unbiased Estimator (BLUE)
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9.3.1 Elements of Estimation Theory — Simple Mean Example

= Simple example: estimate the mean of a sample of i.i.d. RVs
X1,X5,X3, .., X,

Sample Mean: X,

SIP—*

is an estimate of the population mean or true mean,
E{X;} = the mean of the distribution from which the X;
were drawn.

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 6.3
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9.3.2 Elements of Estimation Theory — LSE Example

Least Squares Estimator (LSE)

https://commons.wikimedia.org/wiki/File:Linear_regression.svg
|.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1st ed., 2010, Chap. 6.3
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9.3.3 Elements of Estimation Theory — MLE Example

correct for the exponential count loss in N~
binary, clock-driven SPAD imagers e 212X Hoe Ol

7 || 7

Maximum Likelihood Estimator (MLE) to € @
A\ Ml _A'

SPAD pixel array

Jomod ‘selg

12.3mm

150F - - -/

Column registers, multiplexers, signal trees

Cy: Measured count rate (externally)

o 100
S
éE Cp: Detected count rate (internally)
o
50 measured
— - linear
clock—driven readout model 1 — ¢~ €D xTreadout
C event—driven readout model E[Cy] = T
a-< . : : . . , readout
0 100 200 300 400 500 600 700 1l — Cu X T
CD [keps] E[Cp] = ( M readout)

Treadout
I. M. Antolovic et al, Nonuniformity Analysis of a 65-kpixel CMOS SPAD Imager, |IEEE Trans. on Electron Devices 63, 2016
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9.3.4 Elements of Estimation Theory — BLUE Example

Positron Emission o
s~ SN 1
Tomography 4 detector /
Basics [ block S/
annihilation\ ,' *’I’
process N\ /
S /

S ‘ A Time
- I Energy
” ; Position

- / J,
/
,{ — LOR

~\~ @ coincidence

unit

W et

L. Braga et al., ISSCC, 2013
GE Discovery 1Q, Nov 2016
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9.3.4 Elements of Estimation Theory — BLUE Example

Positron Emission
Tomography
Reconstruction
Example

G. Nemeth, Mediso, Delft WS 2010
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9.3.4 Elements of Estimation Theory — BLUE Example

Positron Emission Tomography Building Blocks & Main Variables
Problem: estimate the scintillation event time T, given a set of timing measurementst,

Aim. obtain estimator with lowest variance (best timing precision)

scintillator crystal

gamma | - |
photon * Spot Spatial Position (X;Y)

3

Pulse Arrival Time T

scintillation

event -

— Time

Photons

Pulse Energy

photosensor

— Time
~200 ns

Time
R. Walker et al., 1ISW, 2013

Typ some 10% photons/scintillation, few 103 detected
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9.3.4 Elements of Estimation Theory — BLUE Example

LYSO: 1,,.~70ps, t¢,,~30ns

Fishburn and Charbon (2010)

M. Fishburn, E. Charbon,

. The scintillation follows a [ . Fshbun, €
double exponential decay. " .
Fl e NS5, 2010
s )
] The transit time spread is 7 1\ E-Venialgo et al,
. . 205 NSS-MIC, 2015
modelled as additive noise. >
=)
g
J The best timing performance *
=% 50 100 150 20(

might not be obtained with Time (o9
the first photoelectron

Side 60 EPFL
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9.3.4 Elements of Estimation Theory — BLUE Example

1 .
n 1st

photoelectron

Order
Statistics

20" photoelectron

hotoelectron

40" photoelectron

Probability Density (a.u.)
o
(8)]

IJAN

0 2 4
Time (ns) f@®),F() =
R' - : scintillation
. . — . q— PDF/CDF
])q(?f) N (Q — 1)!(3 — Q)! [1 a F(tﬂ( ! [F(t)(j )}f(t% (pre{ﬁous slide)

T _ _ _ Order statistics implies
PDF of the gt" photoelectron’s time-of-registration. ,
correlation between

timestamps

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Theorem 8.6.4
E. Venialgo, E. Charbon et al., PMB 2015
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9.3.4 Elements of Estimation Theory — BLUE Example

Lower bound for LYSO:Ce
350 : : : g ®

g th,. : ' -
» usingn  timestamp : . ‘
O using first n timestamps :
using all timestamps

Timestamp for the nt" detected scintillation photon

300

Order Statistic

Lower bound on the CRT for LYSO:Ce on MPPC-S10362-33-050C, using
the nth, the first n, or all detected photons (“order statistics”) for timing

10
Z 250} Parameters:
t ®
[aa] —
= 7.= 90 ps
U L
= 200 1,= 44 ns
2]
g 120 ps
0 —
> 150 | p
£ Ny = 4700
E . . det
-g ‘IOO 1 1 1 i
o 0 20 40 60 80 100
o

02 04 06 08 1
time (ns) D. Schaart, ANSRI 2016, 2016, Dublin, Ireland
Exemplary probability density functions for the nt" order statistic

for LYSO:Ce on MPPC-510362-33-050C
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9.3.4 Elements of Estimation Theory — BLUE Example

Ap) J (p)
Iy = Z twg . p=1.2.3. «—— General estimator
g=1 (p is one of 3 possible estimators)

(@

A simple estimator 1,,,-{}1} — L g=1....0 < Simple mean coeffs.
approach:

(p = 1 estimator) ' 350

% usingn th timestamp :
300k | © using first n timestamps |
using all timestamps

2 250}
E *
|_
oc
U 200+
150
[L] D. Schaart, ANSRI 2016, 2016, Dublin, Ireland 100 i - : "
0 20 40 60 80 100

E. Venialgo, E. Charbon et al,, PMB 2015 Order Statistic
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9.3.4 Elements of Estimation Theory — BLUE Example

= Assuming large number of measurements

= QOther Estimator Approaches: Best Linear Unbiased Estimator (BLUE)

Ap)
0o = Z fqné,-f"}
3 Cd
q’ - - :
|C~"d||3

Photoelectron order number

. p=1,2.3.«—— General estimator

. «— BLUE coeffs. (correlation matrix)

48

E. Venialgo, E. Charbon et al., PMB 2015
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8.2

8.3

8.4

9.0

9.1

9.2

9.3

9.4

Introduction to Probability
Random Variables
Moments

Covariance and Correlation
Random Variables/2
Random Processes

Central Limit Theorem
Estimation Theory

Accuracy, Precision and Resolution
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. ’?;2000;_ CMS Preliminary —#— S/B Weighted Data
9.4 Error Analysis S1800L ts=7TovLag 1! SRR
N - (s=8Tev,L=53f" 7 g
©1600 —
1400
21200
= The aim of error analysis is to quantify and record the errors associated L%moo:— Higgs boson
with the inevitable spread in a set of measurements. T 800
£, 600
2 400F
=  Confidence boundaries represent the quality of the approximation given 200
by the uncertainty. - I
Y Y 0 120 140
m,, (GeV)
Example the SIX_SIgma methOd, 5 Slgma ||m|t (CERN) @ 10,000—Standardmodelprediction ¢ Data point with margin of error

1000
Hint of new discovery ->

" Uncertainties can be associated to random errors (hence influencing the | .
statistical fluctuation...

variance of the measurement distribution) or to systematic errors (acting
on the mean value of the measurement distribution).

100

10 '

| H

200 400 600 800 1000 1200 1400 1600
Combined energy of the photons produced (GeV)

Number of events

SOURCE: THEATLAS COLLECTION

|.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 15t ed., 2010, Chap. 1 . .
https://universe-review.ca/R15-20-accelerators03.htm
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9.4.1 Accuracy

Accuracy -> mean

= The accuracy of a measurement gives a notion of the mean
value of the set of measurements distribution with respect to
the real value.

" An accurate measurements distribution will hence have a High Precision, High Accuracy Low Precision, High Accuracy

very small systematic error, but could be affected by a large

spread in the data (high variance).
High Precision, Low Accuracy Low Precision, Low Accuracy

= Accuracy can be enhanced in the experimental real life by
means of calibration techniques.

|.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 15t ed., 2010, Chap. 1
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9.4.1 Accuracy — Example

Calibration of a
Time-to-Digital
converter

S. Burri, EPFL, MDPI
Instruments, 2018

uuuuuuuuuuuuuuuuuuuu
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9.4.2 Precision

Precision -> spread (variance)

=  The precision of a measurement gives information about
the spread of the measured set of data collected by the
measurement.

= A precise measurement distribution will have a low High Precision, High Accuracy Low Precision, High Accuracy

dispersion of data (hence a small variance), but it might

have a mean value very distant from the real one.
High Precision, Low Accuracy Low Precision, Low Accuracy

®" |n order to enhance precision, the most simple way is to
increase the size of the sample data. In fact, as shown
previously, for experimental data the variance decreases
linearly with the number of samples collected.

|.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 15t ed., 2010, Chap. 1
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9.4.2 Accuracy vs. Precision

High Precision, High Accuracy Low Precision, High Accuracy

High Precision, Low Accuracy Low Precision, Low Accuracy
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9.4.3 Resolution

The resolution of a measurement is the smallest change in the

underlying physical quantity that produces a response in the
measurement. [Wikipedia]

In case of an ADC (analog-to-digital converter), the resolution is i
given by one bit. :

High resolution 10 Downing street. Low resolution 10 Downing St.

Example: for an oscilloscope with an 8 bits ADC, set at 100
mV/div (i.e. for a total screen width of 800 mV), the
resolution of each point collected is given by:

800
8 bits = 28 different values — Res = ote mV = 3.125mV
aqua | C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics
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Take-home Messages/W9-3

" [aw of Large Numbers:

running proportion of Heads

= Concept of i.i.d. random variables

0 50 100 150 200 250 300

= Mean and Variance n=1 - number of tosses
= Central Limit Theorem
_ . Bin(10, 0.9)
= fstimation Theory: -

5 6 910

= Examples of estimators, MLE (MaX|mum leellhood
Estimator)

= Example: Positron Emission Tomography <> different time-
of-arrival estimators

» Precision, Accuracy, Resolution

High Precision, Low Accurac y Low Precision, Low Accuracy

80 85 9.0 95 100
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Appendix A: Gamma Distribution — Gamma Function

= While the Exponential distribution represents the wait
time before the first success under the conditions of
memorylessness, the gamma distribution represents the
total waiting time for multiple successes (hence it is the Gamma function

sum of multiple exponential distributions).
=  We first define the gamma function as:
> dx
I'(a) = f x%e % —, a>0
0 X o | |
db 2 4
= The gamma function has the following properties: pus
[(a+1) =al(a) I [\

'n) =((m-1)!
J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 8.4
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Appendix A: Gamma Distribution (contd.)

Gammal(a,1)
= Then, we say that X has a gamma distribution (we will Gamma(3. 1)
write X~Gamma(a, 1)) if:
PDF fx(x) - ag-x 1 >0 3
. X)=———X"¢€ ) X a
X I'(a) X & _
= From the gamma distribution of X~Gamma(a, 1), we get, ¢ :
for A > 0, the more general Y = X/A~Gamma(a, A): o s 02

Gamma(10, 1)

Ay)® v 1
(Ay)%e

fr) = fx(x) Ay

dx B 1
dy| T(a)

0.10

PDF

0.05

hence

0.00

o
[62]
—_
> o
—
[¢2]
no
(=]

1 a4 -1 1
PDF:  fy(y) = m(ﬂﬂ e y;; y >0

J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 8.4
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Appendix A: Gamma Distribution (contd.)

Gammal(a,1)
= From the PDF of the gamma distribution just obtained Gammag3, 1)

Y~Gamma(a, 1), it can be shown that the Gamma is
nothing else but the distribution obtained by summing up _
a independent exponential distributions. In fact, for °
a=1: g

PDF: f(y) = L(Ay)ae"ly1 y >0 =

Y F(Cl) y’ 0 5 10 15 20

reduces to

Gamma(10, 1)

ay 1 )
PDF: fy(y) =Aye y;=/1€ Y, y>0

0.10

which is the exponential distribution.

PDF

0.05

= Follows that, let X{, X5, ..., X;; be ni.i.d. Expo(A4). Then:

0.00

o
[62]
—_
o -
—
[¢2]
no
(=]

J.K. Blitzstein, J. Hwang, /ntrlocfuﬁorggé P;Io_bal;i;it)-/l,—lggﬂzoqg c%gns%(n’ A )
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Appendix A: Gamma Distribution (contd.)

Gammal(a,1)
= ForaX~Gammal(a, 1), it follows: Gammaga. 1)
© 1 dx T(a+1) o
Mean: E{X}= | ——=x%le¥—== =a °
ean X} .l) F(a)x' e — r @) a,E
© 1 dx
Second Moment:  E{X?} = j ——x0t2e™x — = |
0 F(Cl) X ) 0 5 0 15 20
F(a + 2) Gamma(10, 1)
= [ =a(a+1)
Variance:  Var{X} = E{X?} - (E{X})? = 5
=a(a+1)—a’*=a -

J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 8.4
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Appendix A: Gamma Distribution (contd.)

Gammal(a, A)
Gamma(3, 1) Gamma(3, 0.5)
" For the more general gamma distribution
Y = X/A~Gamma(a, 1), by simple transformation, we o 2
obtain: . .
1 a
Mean: E{Y}=-E{X}=-= ) .
A A S s L
0 5 10 15 20 0 5 10 15 20
1 a(a+1)
. 2 _ _ Gamma(10, 1) Gamma(b, 0.5)
Second Moment:  E{Y*} = E{X} =— :
_ 1 a i
Variance: Var{Y} = Var{X == 5 58
ST 5§ o 5 =m0 5 10 15 =
J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 8.4 -> calculate mean/variance for some examples
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Appendix A: Gamma Distribution (contd.)

Gamma(3, 1) Gamma(3, 0.5) Gamma(a /1)
V4
s s .
= 2 | -> calculate mean/variance
for some examples
2 g - a
0 5 10 15 20 0 5 10 15 20 Mean- z
X X
Gamma(10, 1) Gamma(5, 0.5)
2 _ a
Variance: A_Z
°
b 5 8
o " n ©
: I TIS 2IO é é 1I0 1I5 2l0

J.K. Blitzstein, J. Hwang, Introduction to Probability 1% ed., 7015, Chéj%. 8.4
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Appendix B: Poisson Process

= Definition: a sequence of arrivals in continuous time with rate A is a (1D) Poisson process with rate
A if the following two conditions hold:

1) The number of arrivals that occur in an interval of length t is a Pois(At) RV.

2) The numbers of arrivals that occur in disjoint intervals — e.g. (0,10), [10,12) and [15,00) —
are independent of each other.

" IfT;is the time of the j-th arrival, N (t) is the number of events up to the time t, follows:

P{T, >t} = P{N(t) = 0} = e~

so Ty has an Exponential distribution (T; ~Expo(4)), hence T;, being the sum of j i.i.d. exponentials,
is a Gamma distribution (Tj~Gamma(j, 1)), and the interarrival times are i.i.d. Expo(4) RVs.

| X K—K K—K——>

I

0 .o r, T TT,

M— N — S —
At, At, At,

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 5.6, 13
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Appendix B: Poisson Process

= NB:i.i.d. = independent and identically distributed Random Variables, have the same PDF and are
all mutually independent

=  “Confirmation” that the Exponential distribution is closely connected to the Poisson distribution!

= Examples of Poisson processes:
» 1D: cars passing by a highway checkpoint;
» 2D: flowers in a meadow;
» 3D: stars in a region of the galaxy.”

Dark Counts and “real” detections in a SPAD sensor

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 13
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Appendix B: Poisson Process

= Timeline: (0, +o) but it could also be
(—OO, -|—OO)
Simulate Poisson Processes in 1D

» To generate n arrivals from a Poisson process

with rate A: A=1 | H—3% 3% X ]

1. Generateni.i.d. Expo(4) RVs: . |

X1, Xy, ., Xy A=20K x S ) h o '

2. Forj=1,2,...,nset'1}-=X1+---+Xj A=5 |Jeox SO ¢ e HHHH I IO

0 10

3 e the T T be th val Note: interarrival times are i.i.d., but the arrivals

|

T_ en we can take the [y, ..., I to be the arriva are not evenly spaced -> there is a lot of
times. variability in the interarrival times, which

produces Poisson clumping

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 13
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Appendix B: Poisson Process

= A Poisson Process has the following three properties: Conditioning
| X : x >0
0 4 U
1. Conditioning: let {N(t),t > 0} be a Poisson
: N(t,) N(t,) - N(1,)
Process with rate A and t, > t;. Then the )
conditional distribution stands: Superposition
A4,=05 | % & |
. tq 4,=05 | I |
N(t;)|N(t,) = n~Bin (n, t—)
2
A+4,=1| % |
0 10
Thinning
2. Superposition: let {N,(t),t > 0} and a=1 | - — |

{N,(t),t > 0} be two independent Poisson
Processes with rates A; and 4,. Then the 05 |

combined process N(t) = N;(t) + N(t)isa , _,,,

Poisson process with rate A; + 4,. 0

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 13
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Appendix B: Poisson Process

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 13

daqua

A Poisson Process has the following three properties:

Conditioning

% >0

X

L,

&

3. Thinning: let {N(t),t > 0} be a Poisson
Process with rate A, and classify each eventat .

the arrival as either type-1 events (with

probability p) or type-2 events (with
probability 1 — p), independently. Then the

type-1 events form a Poisson process with

rate Ap, the type-2 events form a Poisson
process with rate A(1 — p) and they are i=1

independent.

| C. Bruschini, E. Charbon | 2025

Ml-p)=05

Ap =0.5
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N(t,)

N(z,) - N(t))

Superposition

7K

|
10

Thinning

K K |

|
|
I
0

K
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