

MICRO-428: Metrology

Edoardo Charbon, Claudio Bruschini, Georg Fantner

Institute of Electrical and Micro Engineering (IEM), School of Engineering (STI)

Ecole polytechnique fédérale de Lausanne (EPFL), Neuchâtel, Switzerland

TAs: Samuele Bisi, Alexandre Domenech

EPFL

MICRO-428: Metrology

Week Nine: Elements of Statistics

Claudio Bruschini

TA: Alexandre Domenech (2021: Simone Frasca)

Advanced Quantum Architectures Laboratory (AQUA)

EPFL at Microcity, Neuchâtel, Switzerland

EPFL

Reference Books (Weeks 8&9)

- 📖 J.K. Blitzstein, J. Hwang, *Introduction to Probability*, 1st ed., 2015
- 📖 A. Papoulis, *Probability, Random Variables and Stochastic Processes*, 3rd ed., 1991
- 📖 S.M. Ross, *Introduction to Probability Models*, 10th ed., 2009
- 📖 I.G. Hughes, T.P.A. Hase, *Measurements and their Uncertainties*, 1st ed., 2010
- 📖 G.E.P. Box, J.S. Hunter, W.G. Hunter, *Statistics for Experimenters*, 2nd ed., 2005
- 📖 J.R. Taylor, *An Introduction to Error Analysis*, 2nd ed., 1997

Week 8 Summary

8.1 **Introduction to Probability:** $P\{\mathcal{A}\}, P\{\mathcal{A}|\mathcal{B}\} \rightarrow$ Bayes' rule, Law of Total Prob. (LOTP),
Independent Variables

8.2 **Random Variables:** discrete/continuous RV X and its distribution expressed as

$$\text{PMF } p_X(x) / \text{PDF } f_X(x) \leftrightarrow \text{CDF } F_X(x)$$

Examples: Binomial: $\text{Bin}(n, p)$, Poisson: $X \sim \text{Pois}(\lambda)$, Uniform: $U \sim \text{Unif}(a, b)$, Normal (Gaussian):
 $X \sim \mathcal{N}(\mu, \sigma^2)$, Exponential: $X \sim \text{Expo}(\lambda)$

8.3 **Moments:** RV X : expected value (mean) $E\{X\}$, variance $Var\{X\} = \sigma^2$ /standard deviation $SD\{X\} = \sqrt{Var\{X\}} = \sigma \rightarrow$ n -th moment $E\{X^n\}$, central moment /standardized moment and their properties \leftarrow moment generating function (MGF) $\phi(t) = E\{e^{tX}\}$

8.4 Covariance and Correlation:

Multiple RVs → Multivariate distributions (8.1, 8.2 →): joint → marginal, → conditional, Independent distributions

Covariance $Cov\{X, Y\}$ → $Corr\{X, Y\}$ (unitless version)

Variance of multivariate distributions:

1. $Var\{X + Y\} = Var\{X\} + Var\{Y\} + 2Cov\{X, Y\}$
2. $Var\{X_1 + \dots + X_n\} = Var\{X_1\} + \dots + Var\{X_n\} + 2 \sum_{i < j} Cov\{X_i, X_j\}$

Outline

8.1 Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0 Random Variables/2

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

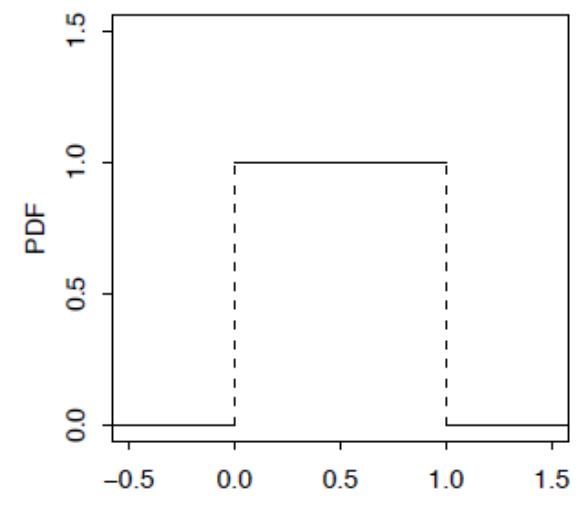
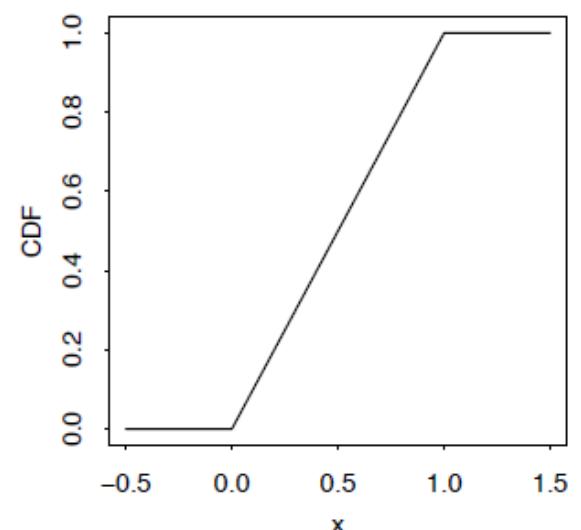
9.0.1 Uniform Distribution

- Uniform random variable in (a, b) : completely random number between a and b
-> PDF constant over chosen interval
- Uniform distribution $U \sim \text{Unif}(a, b)$ in the interval (a, b) if:

$$\text{PDF: } f_U(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\text{CDF: } F_U(x) = \begin{cases} 0 & \text{if } x \leq a \\ \frac{x-a}{b-a} & \text{if } a < x < b \\ 1 & \text{if } x \geq b \end{cases}$$

Unif(0,1) PDF & CDF



9.0.1 Uniform Distribution (contd.)

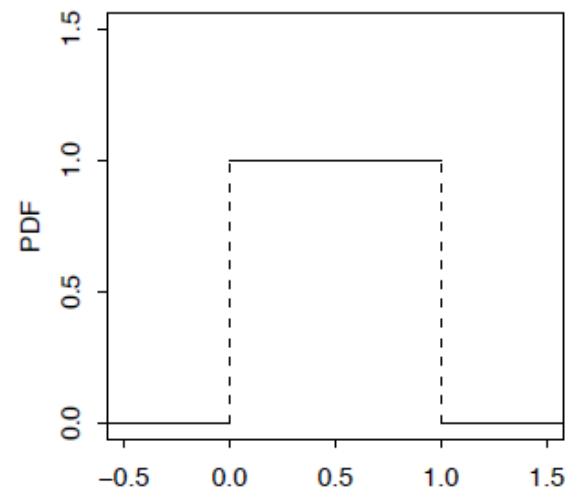
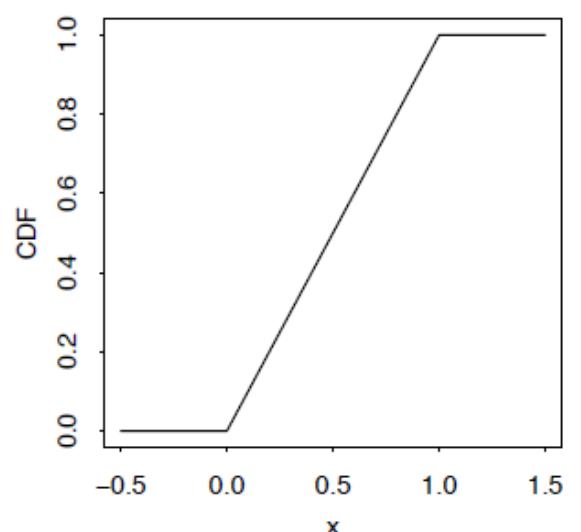
- Probability is inversely proportional to length.
- Even in a sub-interval, we still have a uniform distribution

$$\text{Mean: } E\{U\} = \int_a^b x \frac{1}{b-a} dx = \frac{a+b}{2}$$

$$\text{Second Order Moment: } E\{U^2\} = \int_a^b x^2 \frac{1}{b-a} dx = \frac{1}{3} \frac{b^3 - a^3}{b-a}$$

$$\begin{aligned} \text{Variance*: } Var\{U\} &= E\{U^2\} - (E\{U\})^2 = \frac{1}{3} \frac{b^3 - a^3}{b-a} - \left(\frac{a+b}{2}\right)^2 = \\ &= \frac{(b-a)^2}{12} \end{aligned}$$

Unif(0,1) PDF & CDF



9.0.2 Standard Gaussian Distribution

- Gaussian (or Normal) distribution:
 - well-known continuous distribution with a bell-shaped PDF
 - widely used in statistics because of the [central limit theorem](#) (see next section)
- Standard Gaussian $Z \sim \mathcal{N}(0,1)$:

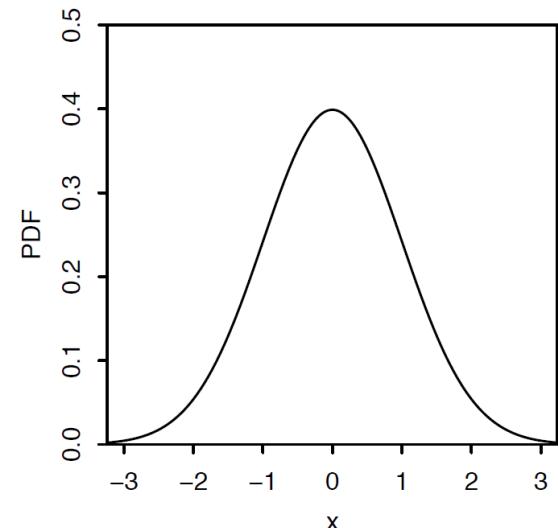
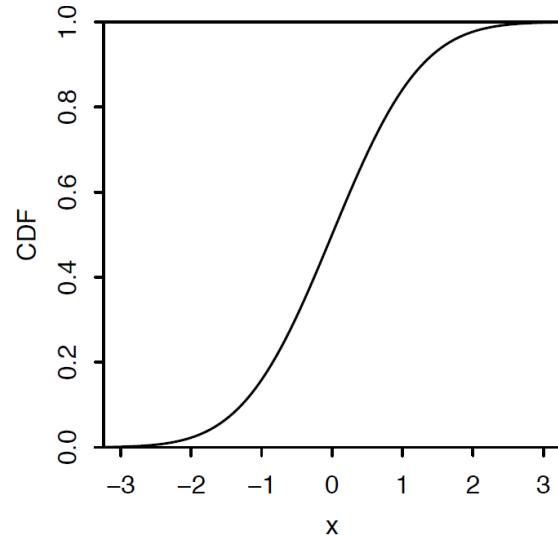
$$\text{PDF: } \varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, \quad -\infty < z < \infty$$

$$\text{CDF: } \Phi(z) = \int_{-\infty}^z \varphi(t) dt = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

No closed form available for the CDF. However, note that:

$$\int_{-\infty}^{\infty} e^{-z^2/2} dz = \sqrt{2\pi}$$

Standard Gaussian PDF/CDF



9.0.2 Standard Gaussian Distribution (contd.)

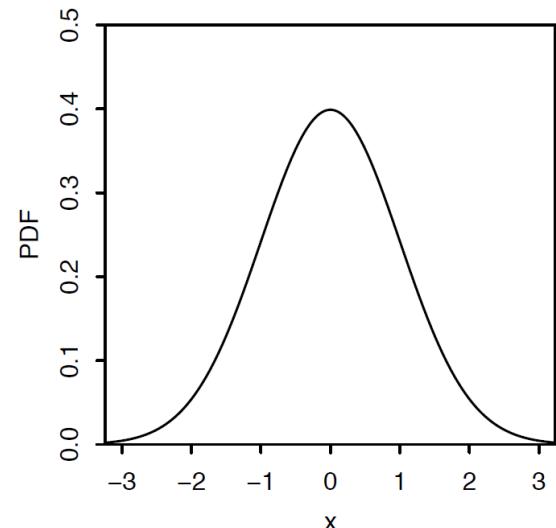
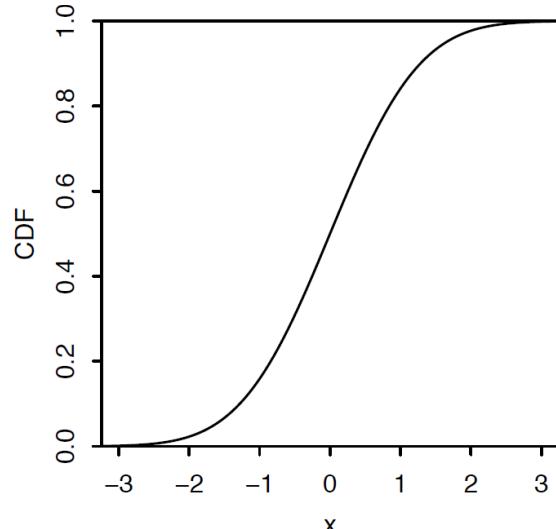
- Properties: symmetry of PDF, symmetry of tail areas, of Z and $-Z$

$$\text{Mean: } E\{Z\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ze^{-z^2/2} dz = 0$$

$$\begin{aligned}\text{Variance *: } Var\{Z\} &= E\{Z^2\} - (E\{Z\})^2 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z^2 e^{-z^2/2} dz = \\ &= \frac{2}{\sqrt{2\pi}} \left(-ze^{-z^2/2} \Big|_0^\infty + \int_0^\infty e^{-z^2/2} dz \right) = \frac{2}{\sqrt{2\pi}} \left(0 + \frac{\sqrt{2\pi}}{2} \right) = 1\end{aligned}$$

(integrating by parts)

Standard Gaussian PDF/CDF



9.0.2 Gaussian Distribution

- Gaussian (or Normal) distribution with any mean μ and variance σ^2 : location-scale transformation of the standard Normal

$$X = \mu + \sigma Z$$

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

Mean*: $E\{X\} = E\{\mu + \sigma Z\} = E\{\mu\} + \sigma E\{Z\} = \mu$

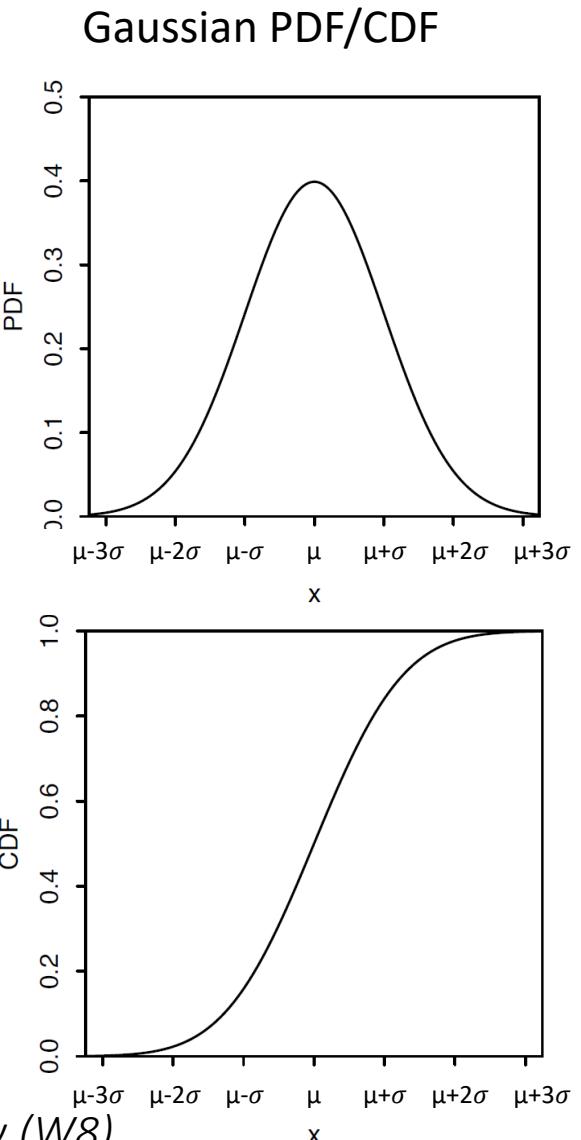
Variance**: $Var\{X\} = Var\{\mu + \sigma Z\} = Var\{\sigma Z\} = \sigma^2 Var\{Z\} = \sigma^2$

- Standardisation process (from X back to Z):

$$\text{for } X \sim \mathcal{N}(\mu, \sigma^2), \quad \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

*Using linearity property (W8)

** Using 8.3.4 (W8)



9.0.2 Gaussian Distribution (contd.)

- General Gaussian CDF $F(x)$ and PDF $f(x)$:

$$\text{CDF: } F(x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

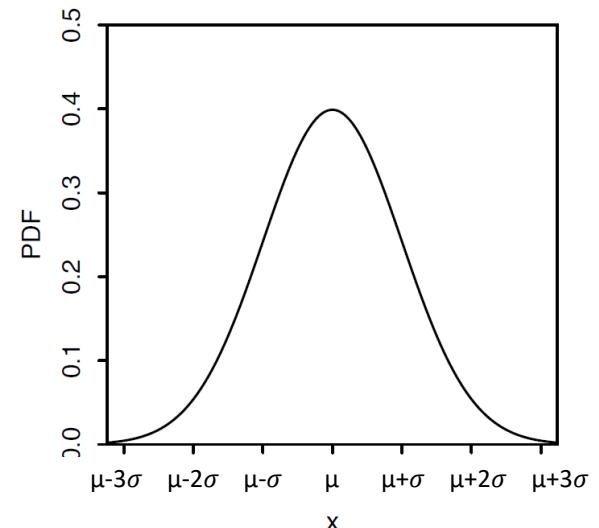
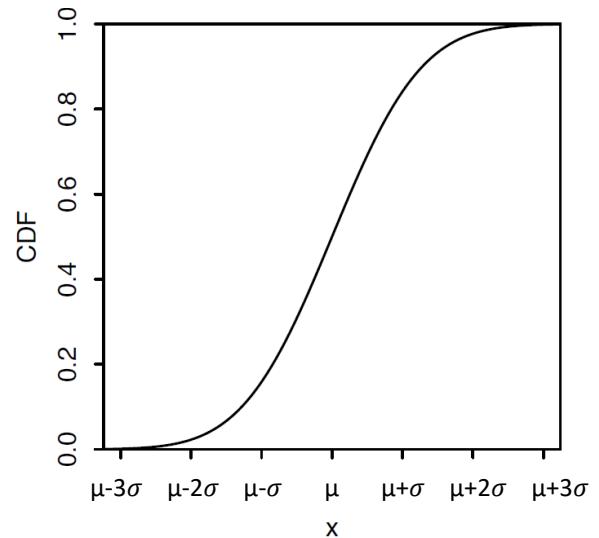
$$\text{PDF: } f(x) = \varphi\left(\frac{x - \mu}{\sigma}\right) \frac{1}{\sigma}$$

- Proof:*

$$F(x) = P\{X \leq x\} = P\left\{\frac{X - \mu}{\sigma} \leq \frac{x - \mu}{\sigma}\right\} = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

$$f(x) = \frac{d}{dx} \Phi\left(\frac{x - \mu}{\sigma}\right) = \varphi\left(\frac{x - \mu}{\sigma}\right) \frac{1}{\sigma} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$

Gaussian PDF/CDF



9.0.2 Gaussian Distribution (contd.)

- Important properties – if $X \sim \mathcal{N}(\mu, \sigma^2)$,

$$P\{|X - \mu| < \sigma\} \approx 0.68$$

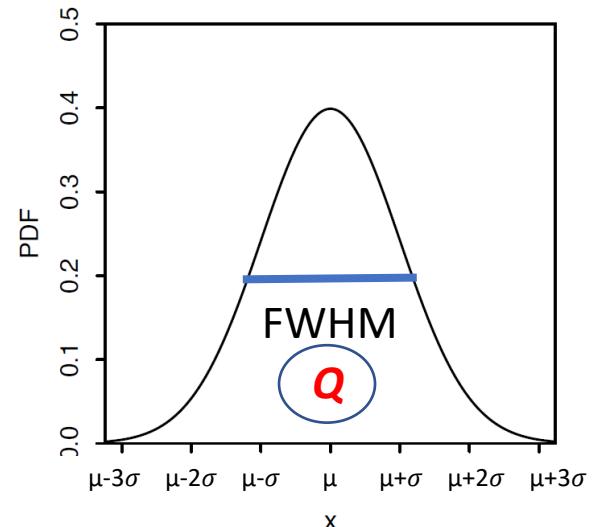
$$P\{|X - \mu| < 2\sigma\} \approx 0.95$$

$$P\{|X - \mu| < 3\sigma\} \approx 0.997$$

Full Width Half Maximum (FWHM) = $P\{|X - \mu| < 1.175\sigma\}$

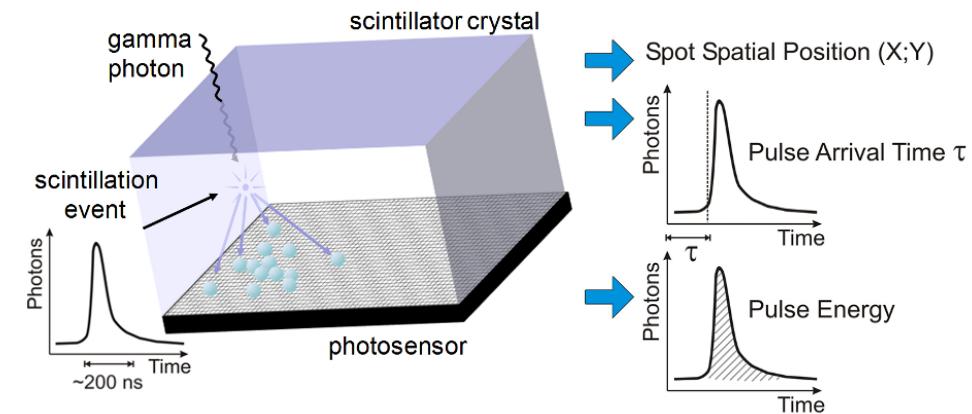
$$FWHM = 2\sqrt{2 \ln 2} \sigma \approx 2.355 \sigma$$

Gaussian PDF/CDF

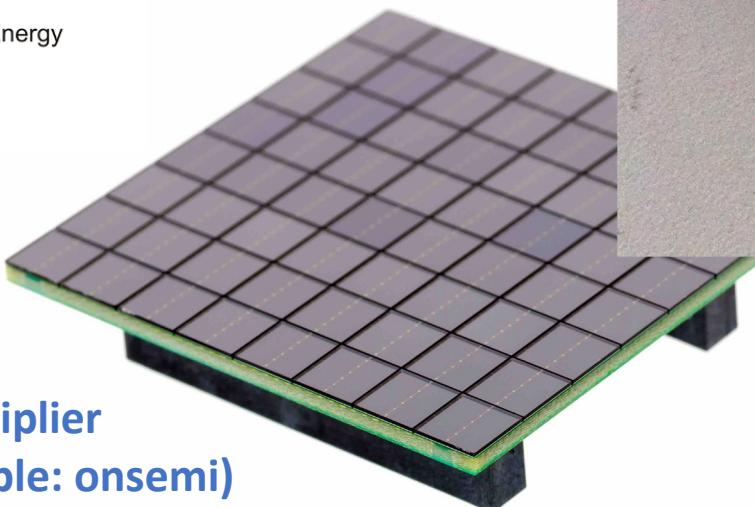


9.0.2 Gaussian Distribution – Example 1

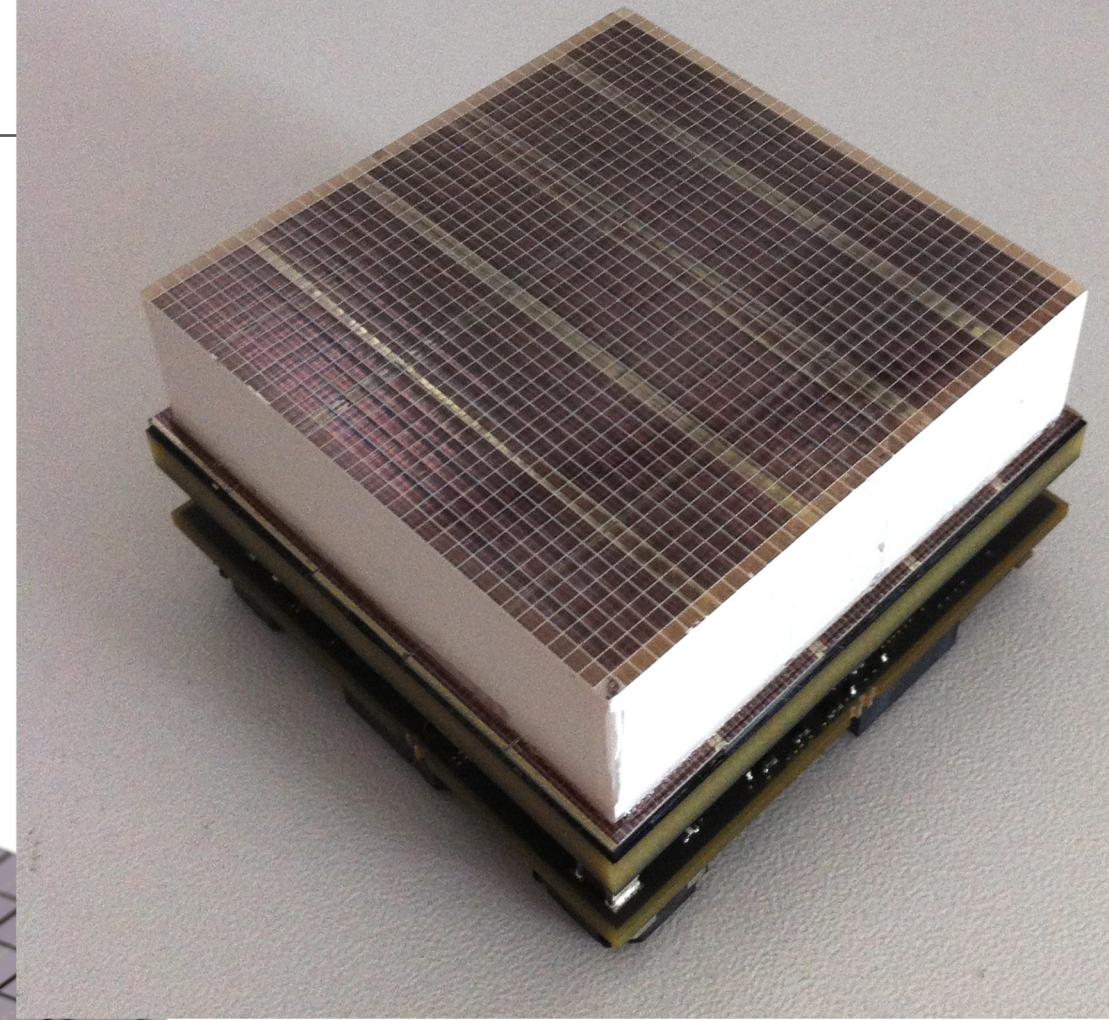
Example of complete PET detection module



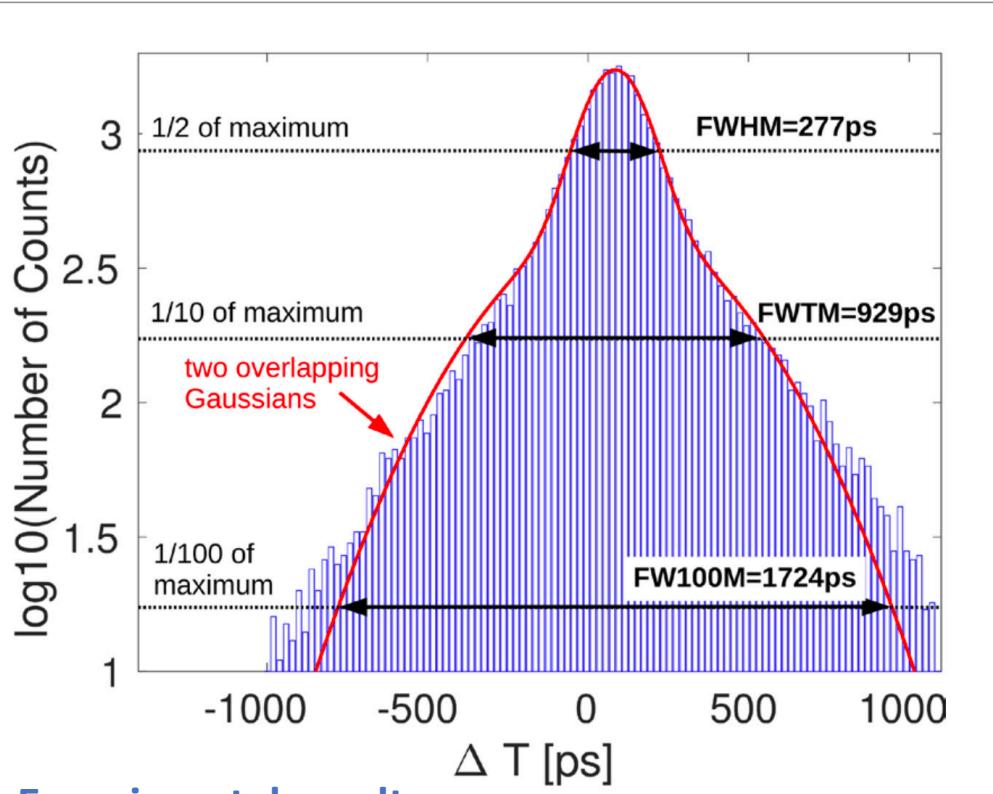
Scintillating crystal (LYSO)



Silicon photomultiplier (SiPM) tile (example: onsemi)

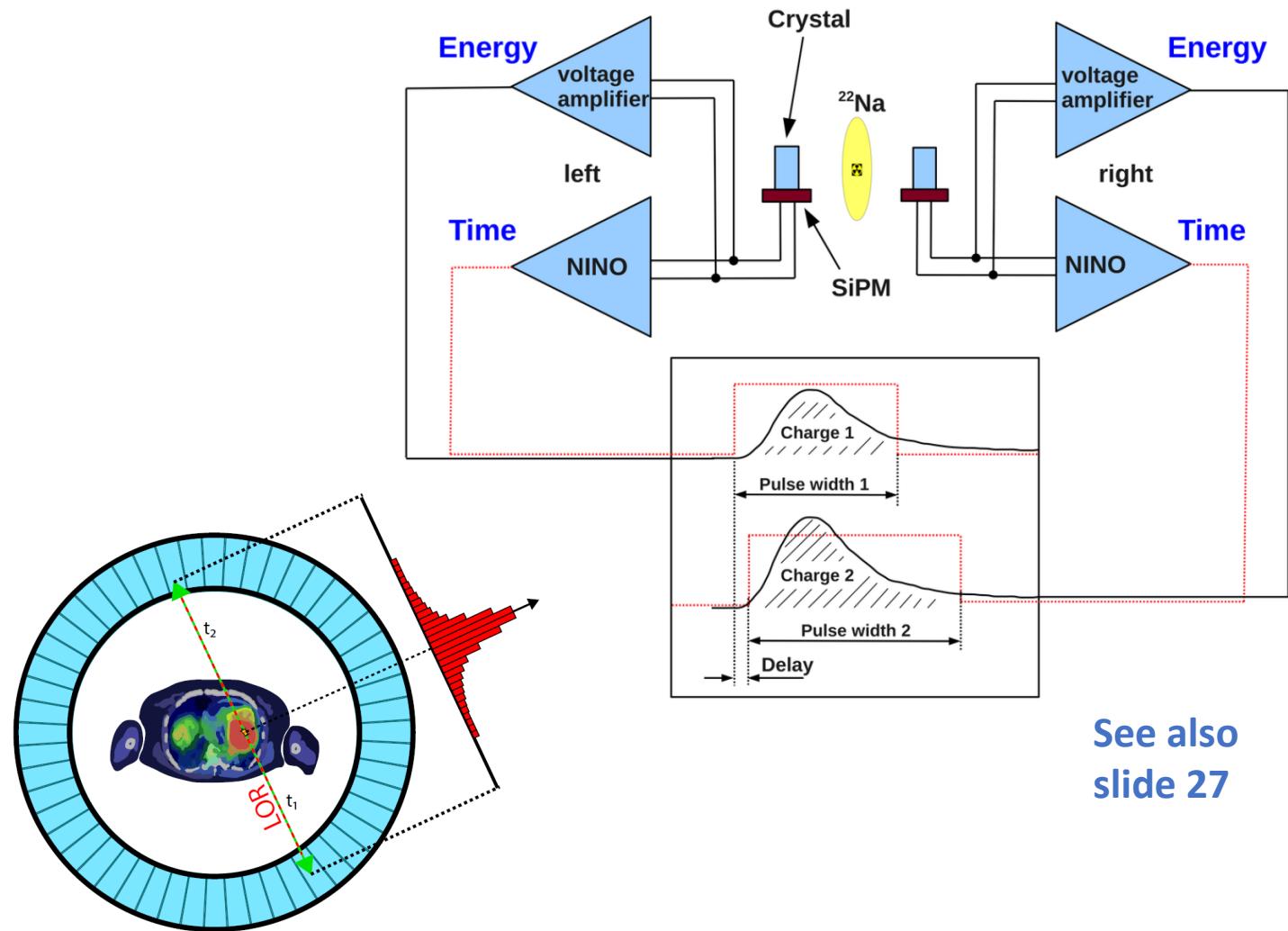


9.0.2 Gaussian Distribution – Example 1



Experimental results
(ΔT = Coincidence Time Resolution = $T_2 - T_2$)

Simplified experimental set-up



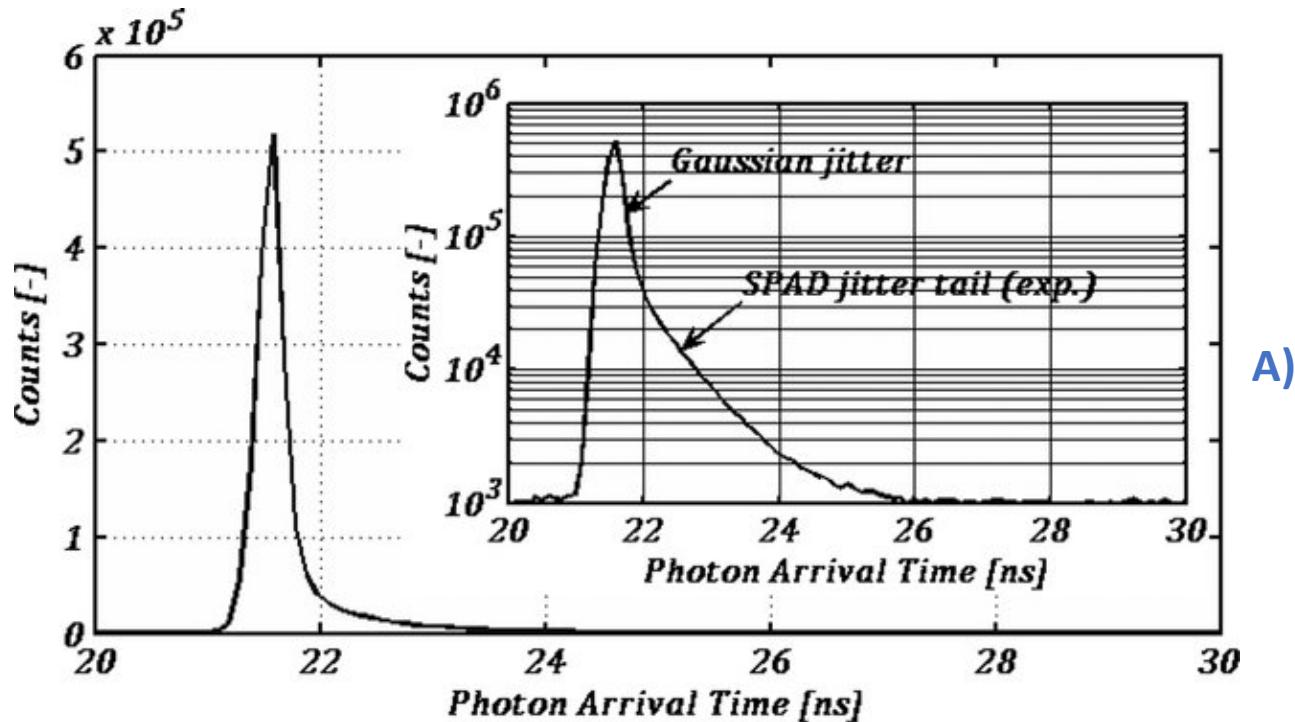
See also
slide 27

F. Gramuglia, EPFL Thèse 8720 (2022).

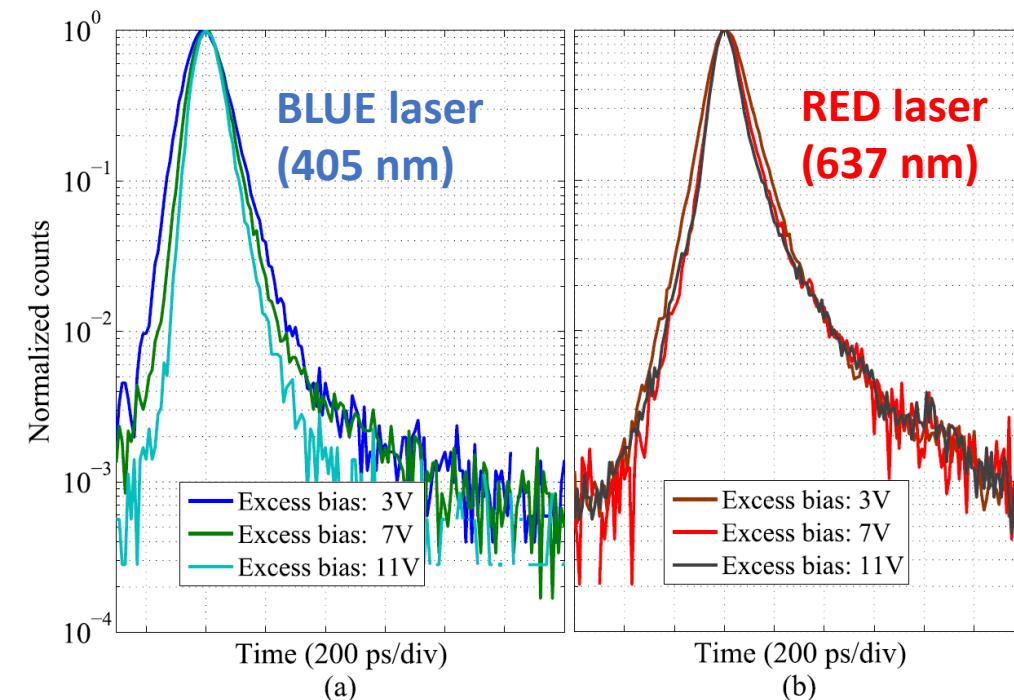
S. Gundacker *et al.*, Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission, PMB 65 (2020).

S. Gundacker *et al.*, Time of flight positron emission tomography towards 100ps resolution with L(Y)SO: an experimental and theoretical analysis, JINST 8 (2013).

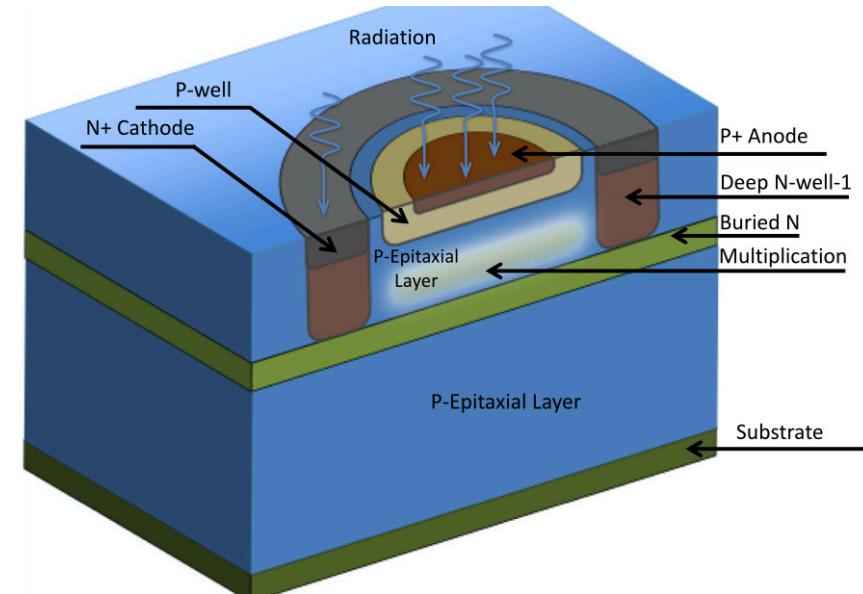
9.0.2 Gaussian Distribution – Example 2



A)



B)



(A) Non-Gaussian behavior – exponential tail – of the SPADs timing uncertainty (jitter noise) due to carrier diffusion -> (B) revised junction design

C. Veerappan & E. Charbon, *A Low Dark Count p-i-n Diode Based SPAD in CMOS Technology*, IEEE TED 63 (2016).

A. Ulku *et al.*, *A 512x512 SPAD Image Sensor With Integrated Gating for Widefield FLIM*, IEEE JSTQE 25 (2019).

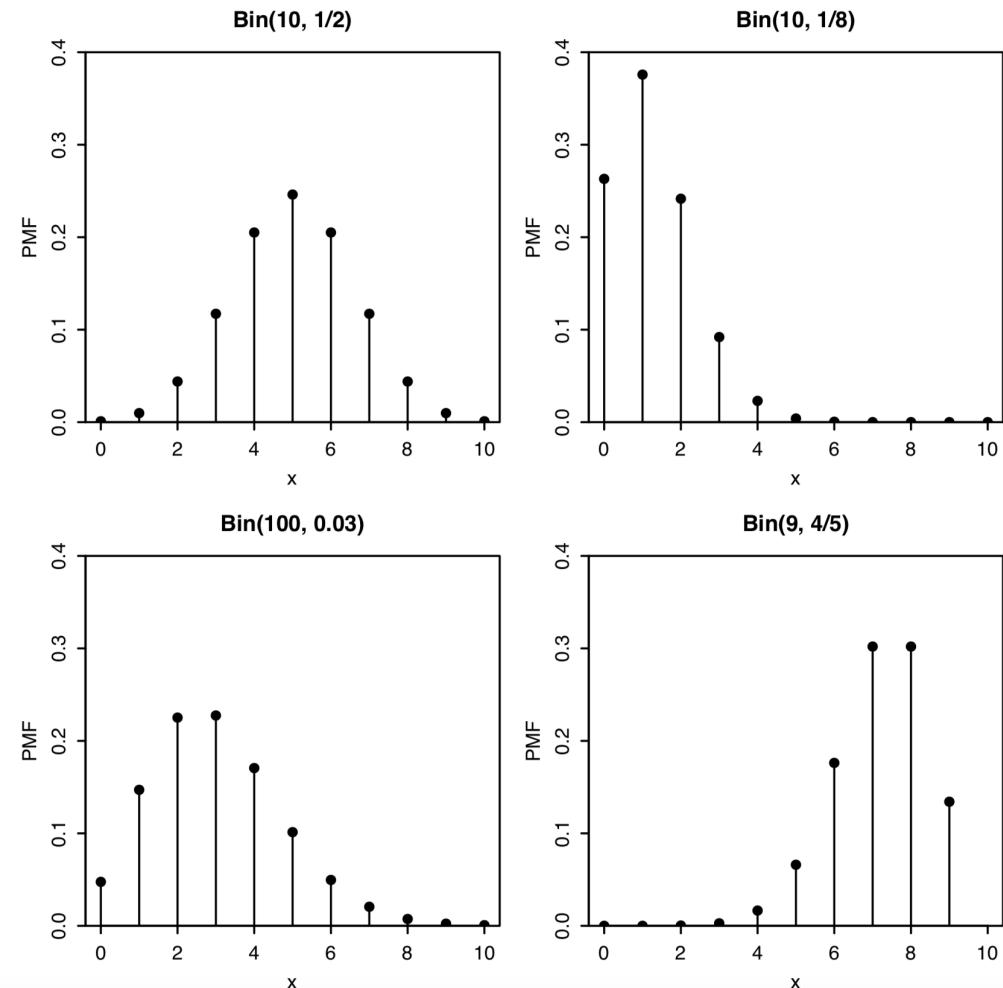
C. Niclass *et al.*, *A 128x128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array*. IEEE JSSC 43 (2008).

9.0.3 Binomial Distribution

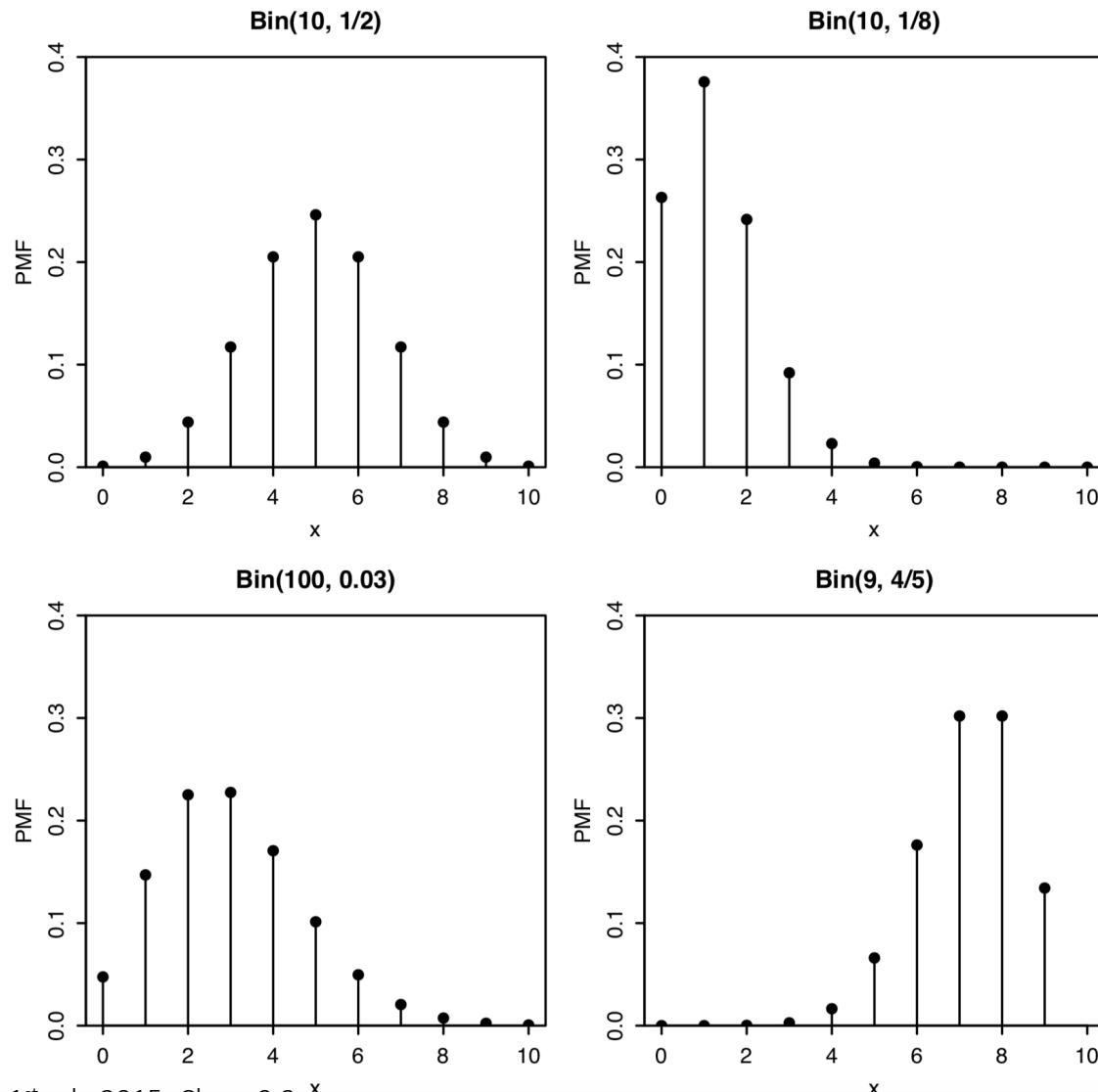
- Suppose that n independent Bernoulli trials are performed. Let p be the probability of success, $1 - p$ the probability of failure, X (RV) the number of successes.
- The distribution of X is called binomial distribution $\text{Bin}(n, p)$ with parameters n and p if:

$$\text{PMF: } P\{X = k\} = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$\text{Mean: } E\{X\} = \sum_{k=0}^n k \binom{n}{k} p^k (1 - p)^{n-k} = np$$



9.0.3 Binomial Distribution



J.K. Blitzstein, J. Hwang, *Introduction to Probability*, 1st ed., 2015, Chap. 9.3

9.0.4 Poisson Distribution

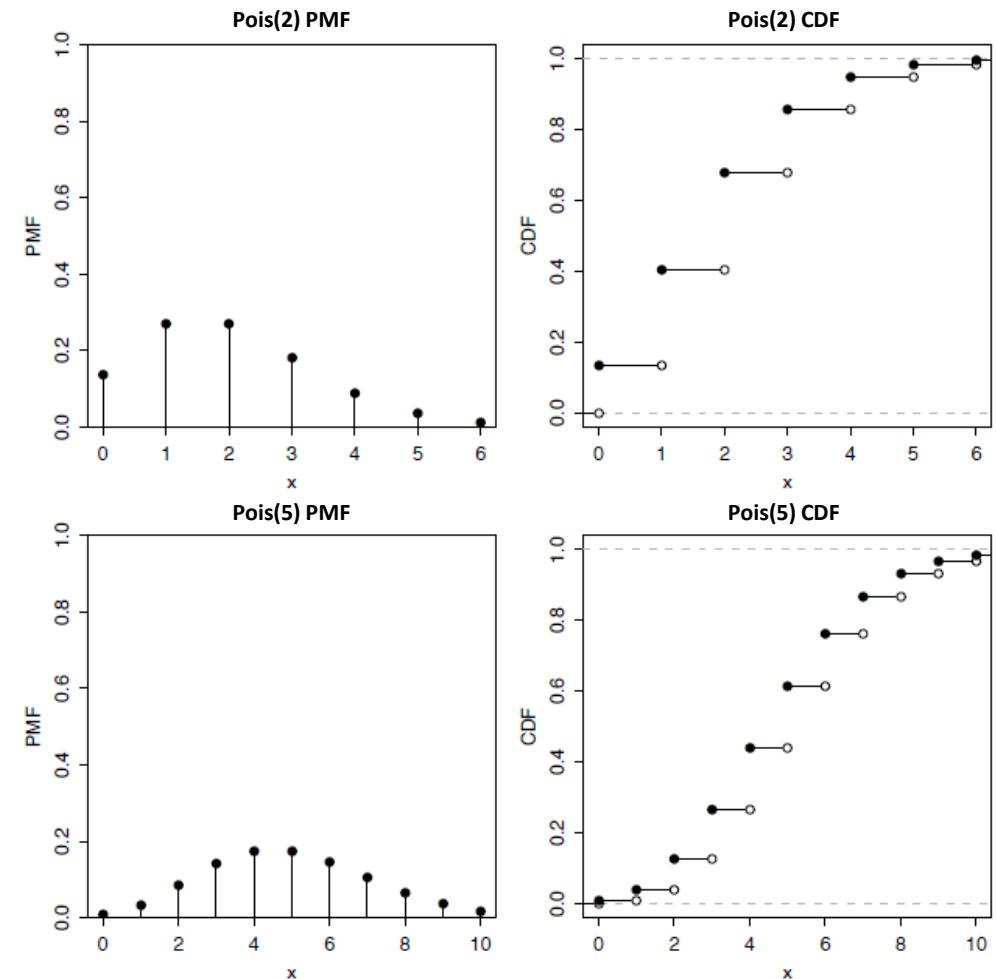
- Definition: a random variable $X \sim \text{Pois}(\lambda)$ has a **Poisson distribution** with parameter λ if its PMF:

$$\text{PMF: } P\{X = k\} = \frac{e^{-\lambda} \lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

$$\text{Mean: } E\{X\} = e^{-\lambda} \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} = \lambda$$

$$\begin{aligned} \text{Variance: } Var\{X\} &= E\{X^2\} - (E\{X\})^2 = \\ &= \lambda(1 + \lambda) - \lambda^2 = \lambda \end{aligned}$$

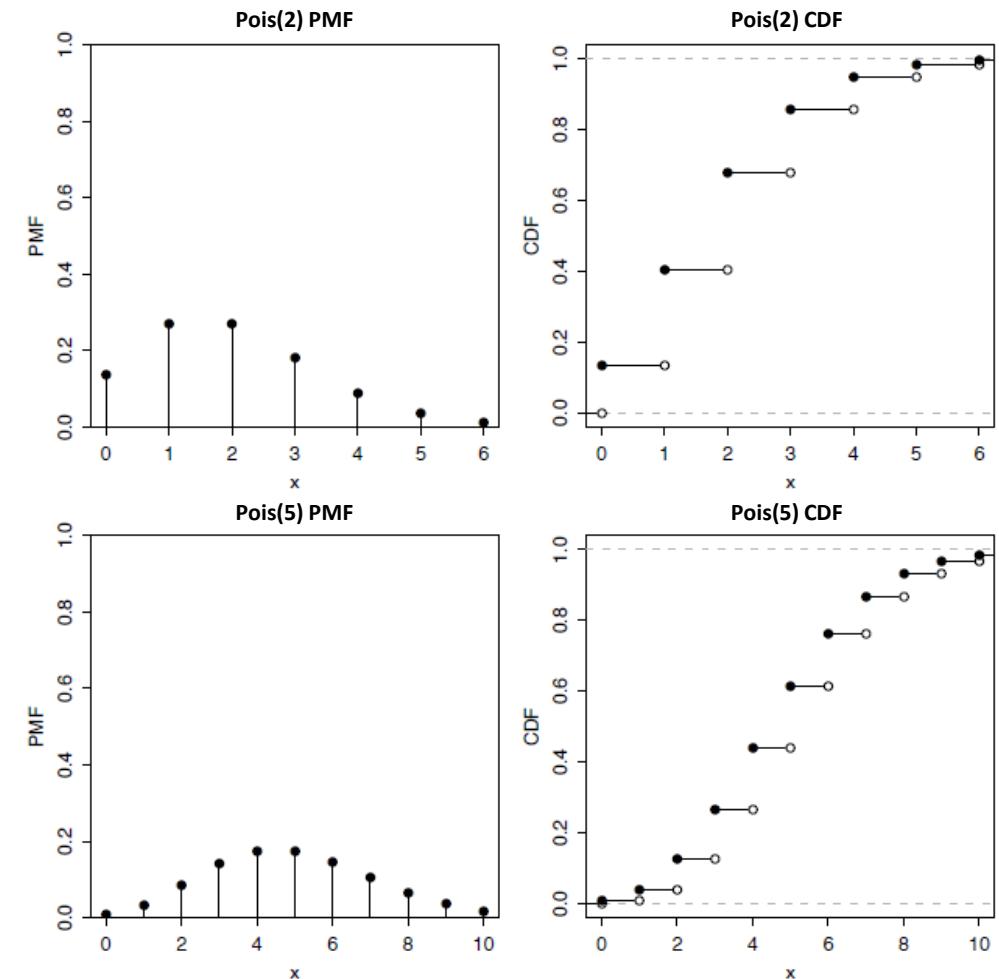
$$\text{NB: Taylor series: } \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}$$



J.K. Blitzstein, J. Hwang, *Introduction to Probability*, 1st ed., 2015, Chap. 4.7

9.0.4 Poisson Distribution (contd.)

- The Poisson distribution has the following properties:
 - If $X \sim \text{Pois}(\lambda_1)$ and $Y \sim \text{Pois}(\lambda_2)$ and X and Y are independent, then the distribution of $X + Y \sim \text{Pois}(\lambda_1 + \lambda_2)$
 - If $X \sim \text{Pois}(\lambda_1)$ and $Y \sim \text{Pois}(\lambda_2)$ and X and Y are independent, then the conditional distribution of X given $X + Y = n$ is: $P(X = k | X + Y = n) \sim \text{Bin}(n, \lambda_1 / (\lambda_1 + \lambda_2))$



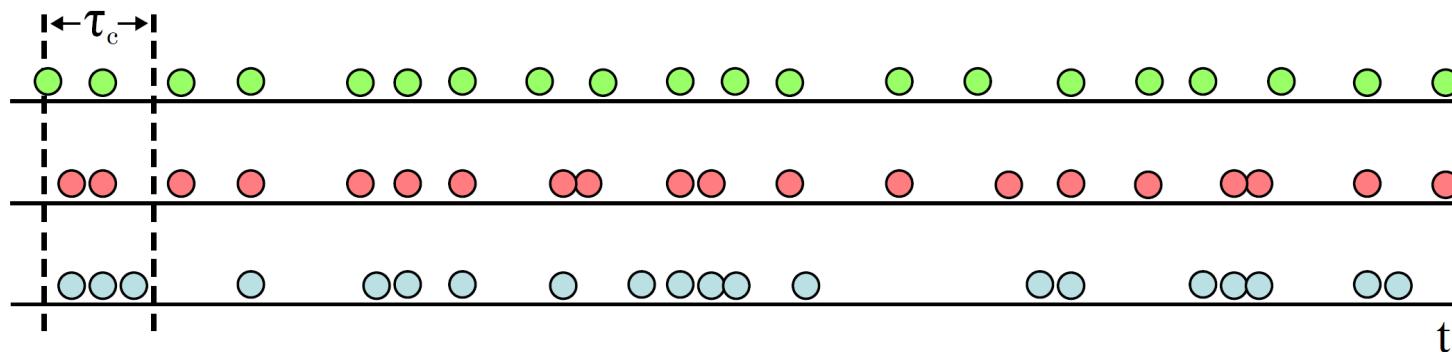
Poisson Distribution vs. Light Sources

- Non-classical light: Sub-Poissonian \rightarrow antibunched (anticorrelated)
- Coherent light source (Laser): Poissonian, random spacing (uncorrelated)
- Thermal Light: Super-Poissonian, Bose-Einstein distribution with zero counts as most probable count (bunched, positively correlated)

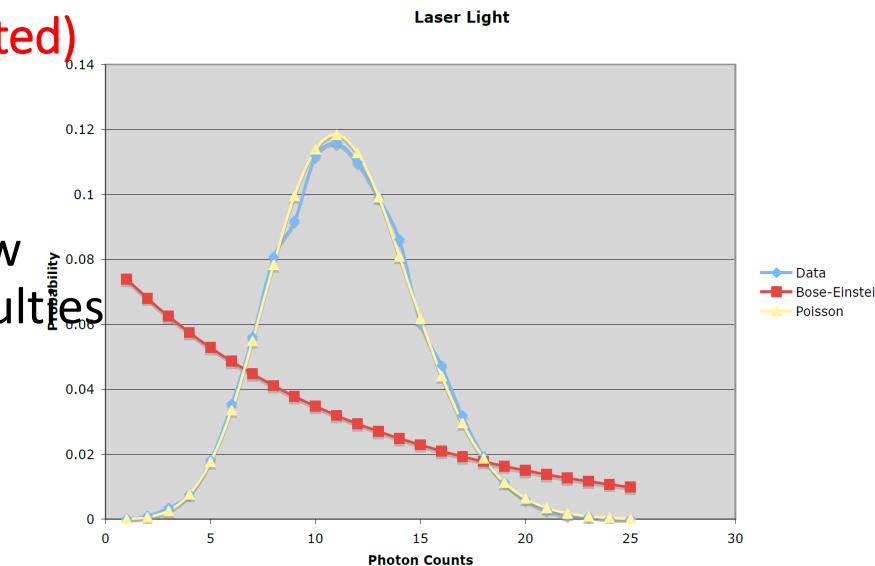
However, in practice it defaults to Gaussian due to the very low coherence time, $O(ps)$, and the corresponding experimental difficulties

Experimentally one can use pseudothermal light*.

<https://demonstrations.wolfram.com/PhotonNumberDistributions/>



Photon detections as function of time for a) antibunched, b) random, and c) bunched light



By Ajbura - Vectorised version of File:Photon bunching.png, CC BY-SA 4.0,
<https://commons.wikimedia.org/w/index.php?curid=73299604>

*E.g. scattering of a laser beam on a rotating ground glass disc

http://physics.gu.se/~tfkhj/lecture_X_differential_transmission-2.pdf

https://www.stmarys-ca.edu/sites/default/files/attachments/files/GriderJordanFinalReport_0.pdf

Poisson Distribution vs. Light Sources

\bar{n} = average photon number

- Non-classical light: Sub-Poissonian

$$\sigma < \sqrt{\bar{n}}$$

- Coherent light source (Laser): Poissonian

$$P(n) = \frac{\bar{n}^n}{n!} e^{-\bar{n}}, \sigma = \sqrt{\bar{n}}$$

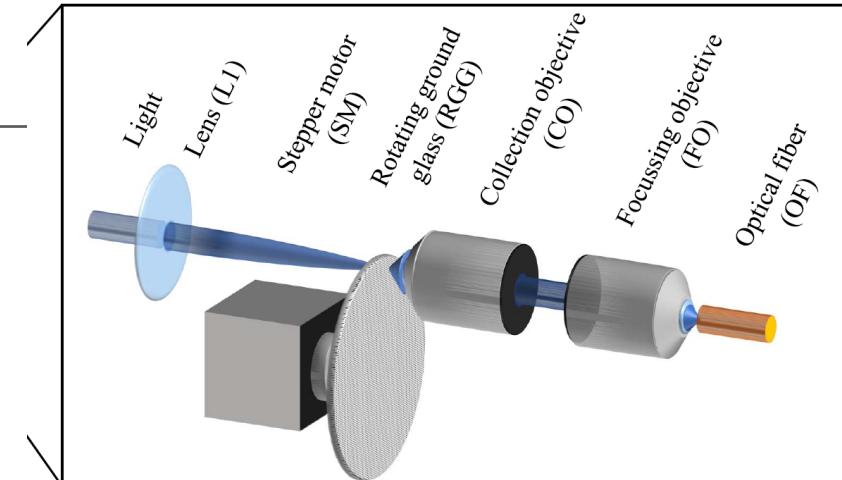
For large photon numbers, the relative fluctuations σ/\bar{n} tend to 0

- Thermal Light: Super-Poissonian, Bose-Einstein distribution

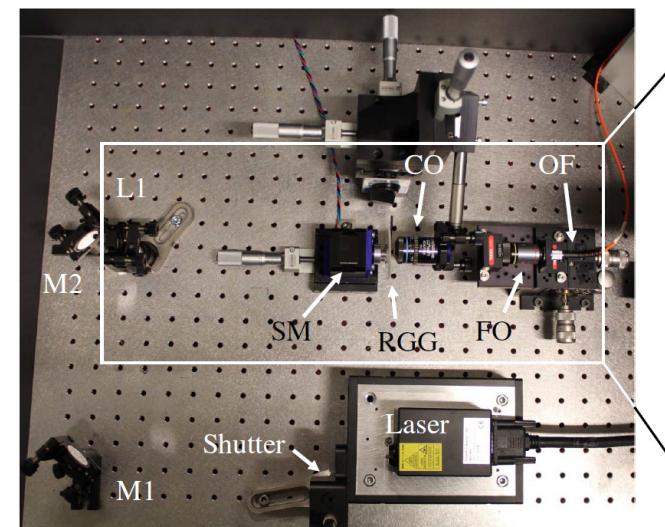
$$P(n) = (1 - e^{-\hbar\omega/k_B T}) e^{-n\hbar\omega/k_B T} = \frac{\bar{n}^n}{(\bar{n} + 1)^{n+1}}, \bar{n} = (e^{\hbar\omega/k_B T} - 1)^{-1},$$

$$\sigma = \sqrt{\bar{n}^2 + \bar{n}} \text{ (for } T \ll \tau_c \text{)} > \sqrt{\bar{n}}$$

For large photon numbers, the relative fluctuations σ/\bar{n} tend to 1



(a)



Pseudothermal light source

Advanced Lab Course (F-Praktikum), Exp. 45, *Photon Statistics*, v. Aug. 21 2017

http://physics.gu.se/~tfkhj/lecture_X_differential_transmission-2.pdf

https://www.stmarys-ca.edu/sites/default/files/attachments/files/GriderJordanFinalReport_0.pdf

T. Stagner et al., *Step-by-step guide to reduce spatial Coherence of laser light using a rotating ground glass diffuser*, OSA Applied Optics 56 (2017).

9.0.5 Exponential Distribution

- A continuous variable $Y \sim \text{Expo}(\lambda)$ has an Exponential distribution with parameter λ if:

$$\text{PDF: } f_Y(y) = \lambda e^{-\lambda y}, \quad y > 0$$

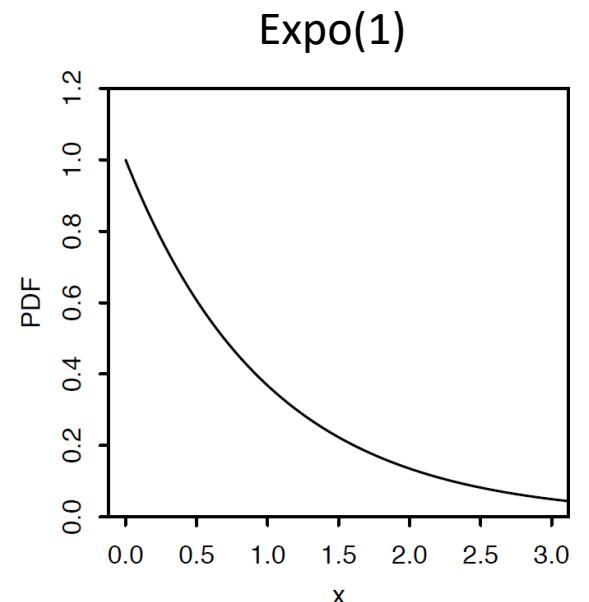
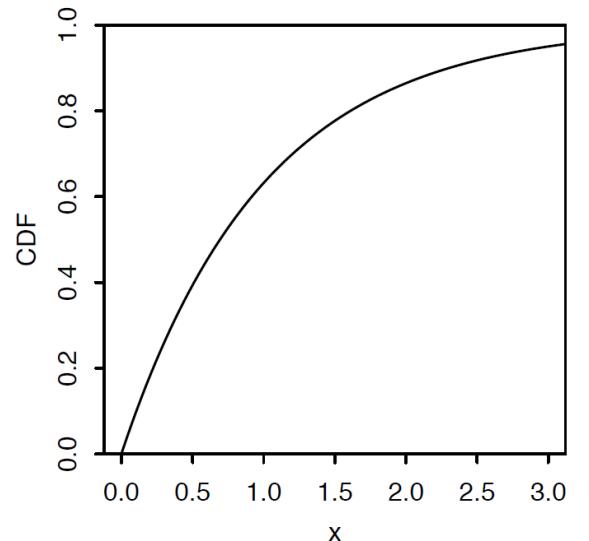
$$\text{CDF: } F_Y(y) = 1 - e^{-\lambda y}, \quad y > 0$$

- If we start from $X \sim \text{Expo}(1)$:

$$E\{X\} = \int_0^{\infty} x e^{-x} dx = 1$$

$$E\{X^2\} = \int_0^{\infty} x^2 e^{-x} dx = 2$$

$$\text{Var}\{X\} = E\{X^2\} - (E\{X\})^2 = 1$$



9.0.5 Exponential Distribution (contd.)

- In general, for $Y = X/\lambda \sim \text{Expo}(\lambda)$ (scaling), we get:

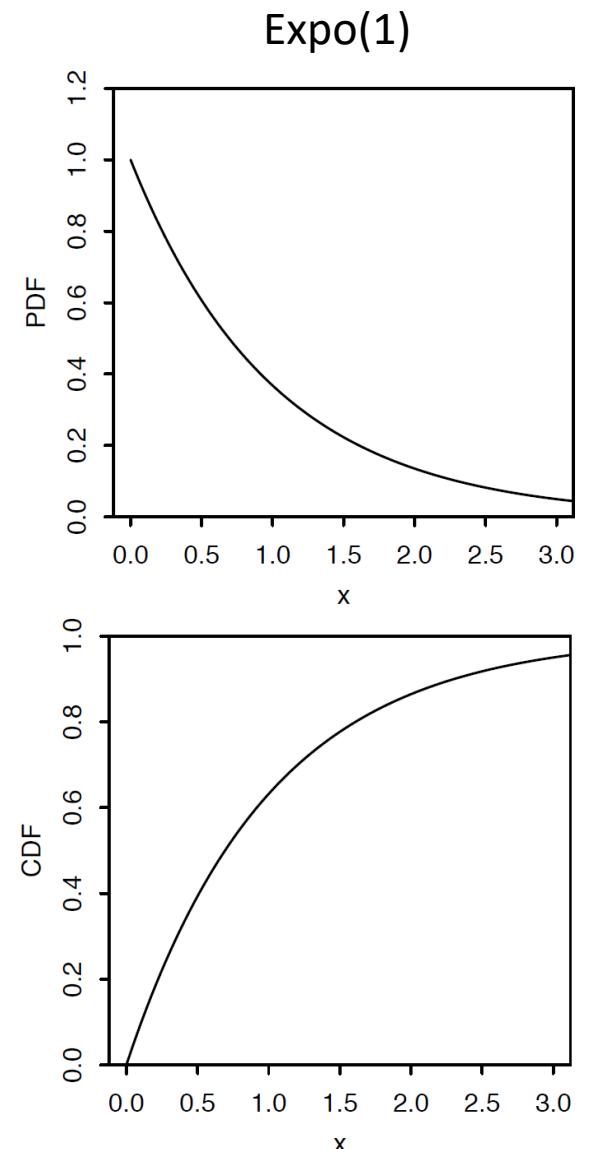
$$\text{Mean: } E\{Y\} = \frac{1}{\lambda} E\{X\} = \frac{1}{\lambda}$$

$$\text{Variance: } \text{Var}\{Y\} = \frac{1}{\lambda^2} \text{Var}\{X\} = \frac{1}{\lambda^2}$$

- Recap: «An $\text{Expo}(\lambda)$ RV represents the waiting time for the first success in continuous time; the parameter λ can be interpreted as the rate at which successes arrive.»
- **Memoryless** property: «conditional on our having waited a certain amount of time (s) without success, the distribution of the remaining wait time (t) is exactly the same as if we hadn't waited at all.»

$$\text{Memoryless: } P\{Y \geq s + t | Y \geq s\} = P\{Y \geq t\}$$

Ex



9.0.5 Exponential Distribution (contd.)

- **Memoryless** property: «conditional on our having waited a certain amount of time (s) without success, the distribution of the remaining wait time (t) is exactly the same as if we hadn't waited at all.»

$$\text{Memoryless: } P\{Y \geq s + t | Y \geq s\} = P\{Y \geq t\}$$

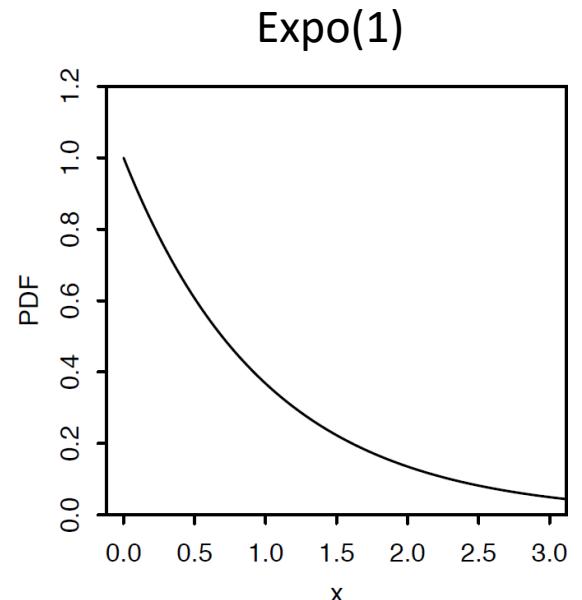
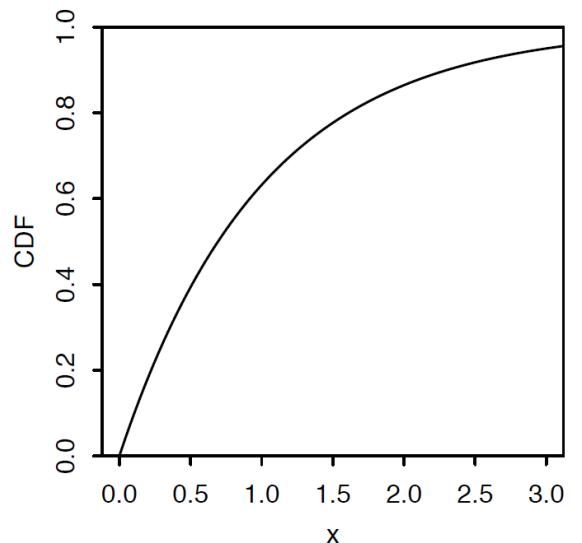
$$\text{e.g. } P\{Y \geq 40 | Y \geq 30\} = P\{Y \geq 10\}$$

$$\text{e.g. } P\{Y \geq 70 | Y \geq 60\} = P\{Y \geq 10\}$$

$$\text{PDF: } f_Y(y) = \lambda e^{-\lambda y}, y_2 = y_1 + \Delta t$$

$$\frac{f_Y(y_2)}{f_Y(y_1)} = \frac{\lambda e^{-\lambda y_2}}{\lambda e^{-\lambda y_1}} = e^{-\lambda \Delta t} = \text{constant}$$

$$\text{e.g. } \frac{f_Y(y_2 = 4 \lambda^{-1})}{f_Y(y_1 = 3 \lambda^{-1})} = \frac{f_Y(y_2 = 2 \lambda^{-1})}{f_Y(y_1 = 1 \lambda^{-1})} = e^{-1} = \text{constant}$$



9.0.5 Exponential Distribution – Example 1 & 2

Radioactive decay

- Universal law of radioactive decay:
 - A nucleus has “no memory”
 - A nucleus does not age with the passage of time-> a nucleus is equally likely to decay at any instant in time
-> constant decay probability

Decay Law: $\frac{dN}{dt} = -\lambda N \Rightarrow N(t) = N_0 e^{-\lambda t}$

- NB: The number of decays in a given time interval in a radioactive sample is Poisson distributed...

Fluorescence lifetime

$$[S_1] = [S_1]_0 e^{-\Gamma t}$$

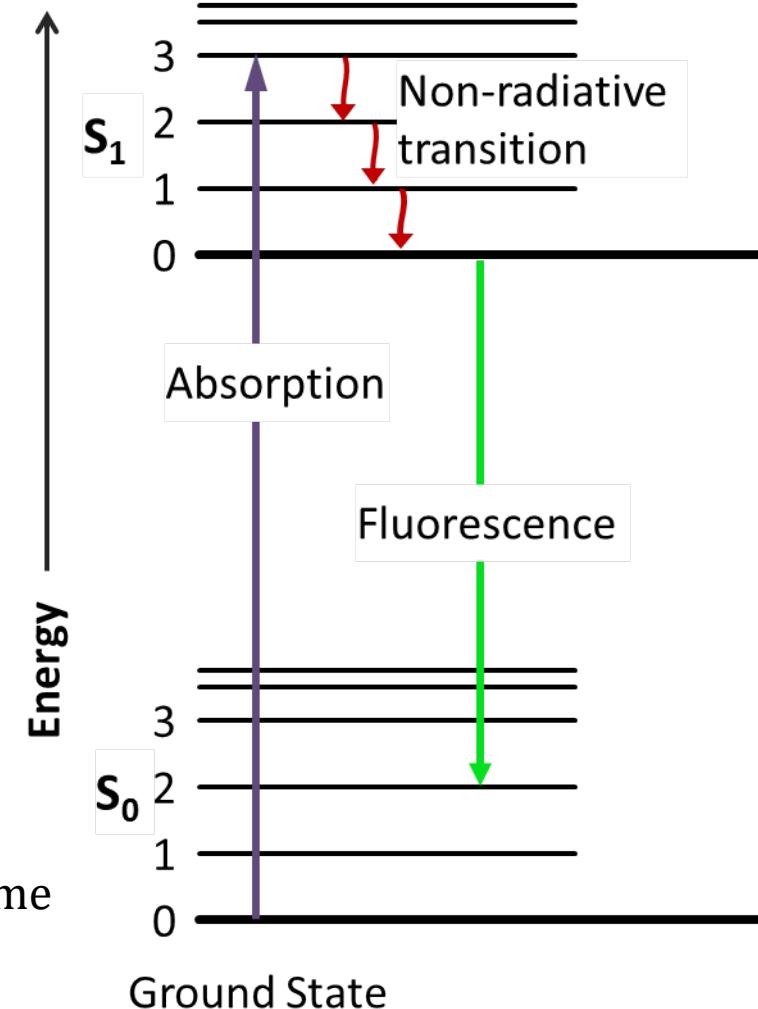
S_1 = concentration of excited state molecules

Γ = decay rate = inverse of fluorescence lifetime = average length of time to decay from one state to another

 EN Wikipedia [Radioactive_decay / Fluorescence](#)

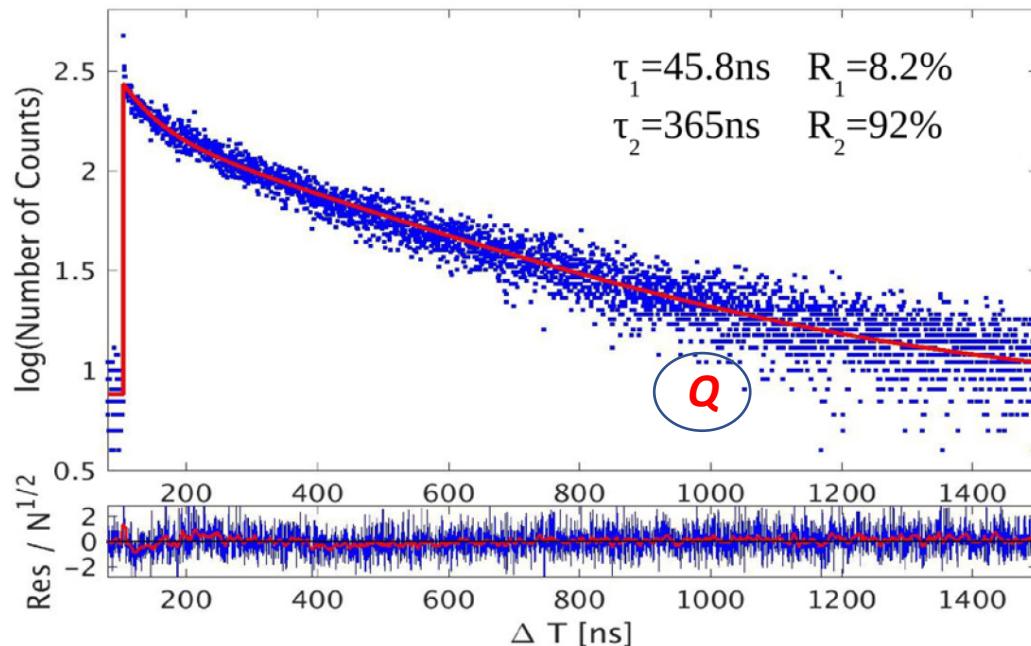
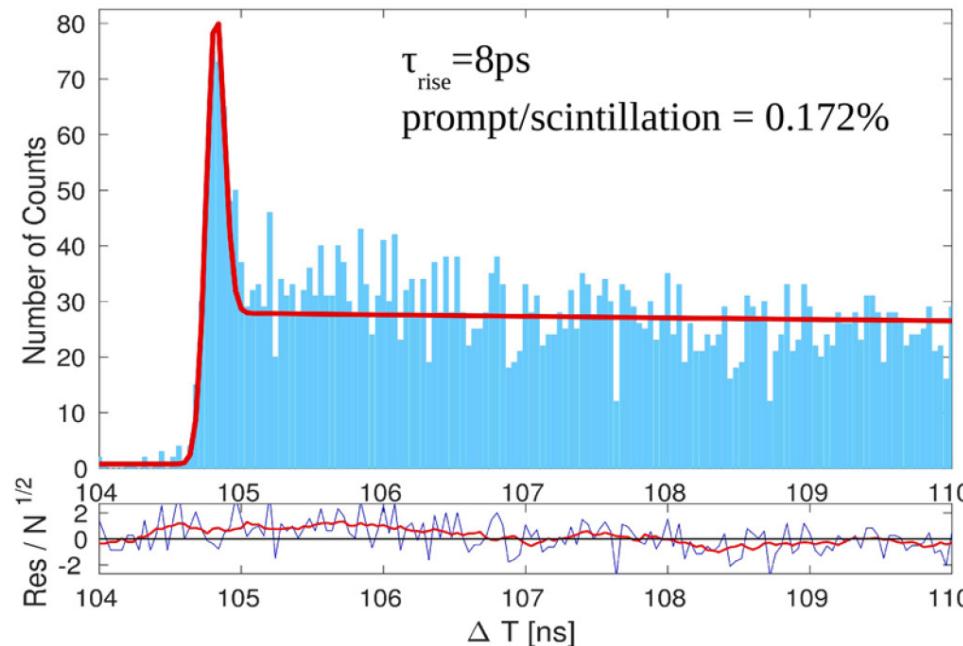
Q

Jablonski diagram



By Jacobkhed - Own work, CC0, <https://commons.wikimedia.org/w/index.php?curid=19180813>

9.0.5 Exponential Distribution – Example 3



Fast vs.
“slow”
scintillation
photons in a
heavy
scintillating
crystal

Figure 10. Scintillation decay and rise time of BGO measured with a time correlated single photon counting (TCSPC) setup using 511 keV annihilation gammas (Gundacker *et al* 2016b). The figure on the right hand side shows a pronounced Cherenkov peak at the onset of the scintillation emission with a relative abundance of 0.172% compared to the total amount of photons detected by the stop detector of the TCSPC setup.

“Physical experiments are imprecise and generate errors handled by statistical methods.”

See also slide 14

(I. Vardi)

 Gundacker S, Auffray E, Pauwels K and Lecoq P *Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET*. IOP Phys. Med. 61 2802–37

9.0.6 Gamma Distribution

S

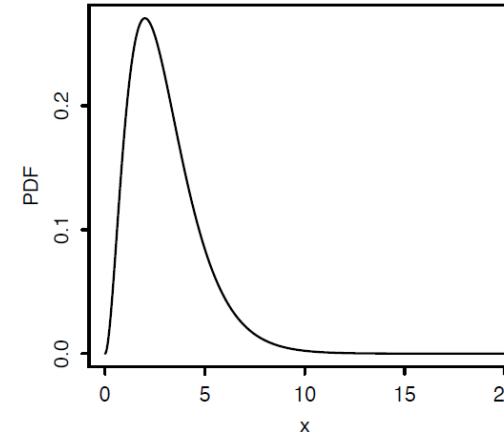
- Let X_1, X_2, \dots, X_n be n i.i.d. $\text{Expo}(\lambda)$. Then:

$$Y = X_1 + \dots + X_n \sim \text{Gamma}(n, \lambda)$$

- The Gamma is nothing else but the distribution obtained by summing up n independent exponential distributions.

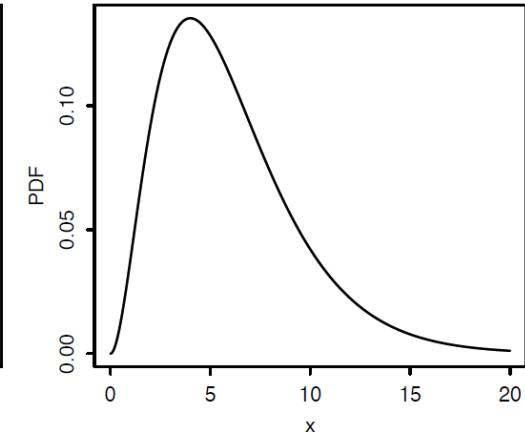
Gamma($a, 1$)

Gamma(3, 1)

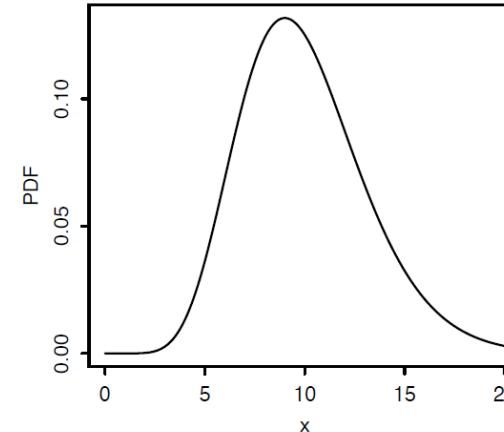


Gamma(a, λ)

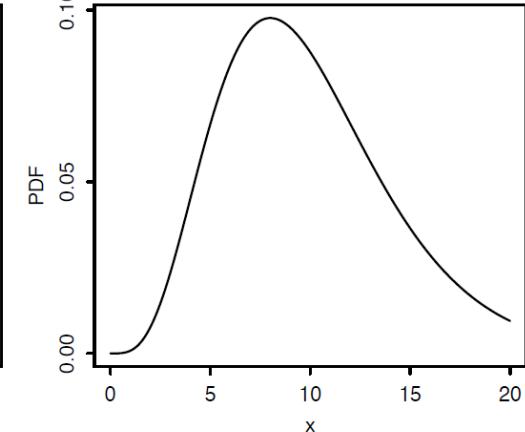
Gamma(3, 0.5)



Gamma(10, 1)



Gamma(5, 0.5)



J.K. Blitzstein, J. Hwang, *Introduction to Probability*, 1st ed., 2015, Chap. 8.4

9.0.6 Gamma Distribution (contd.)

S

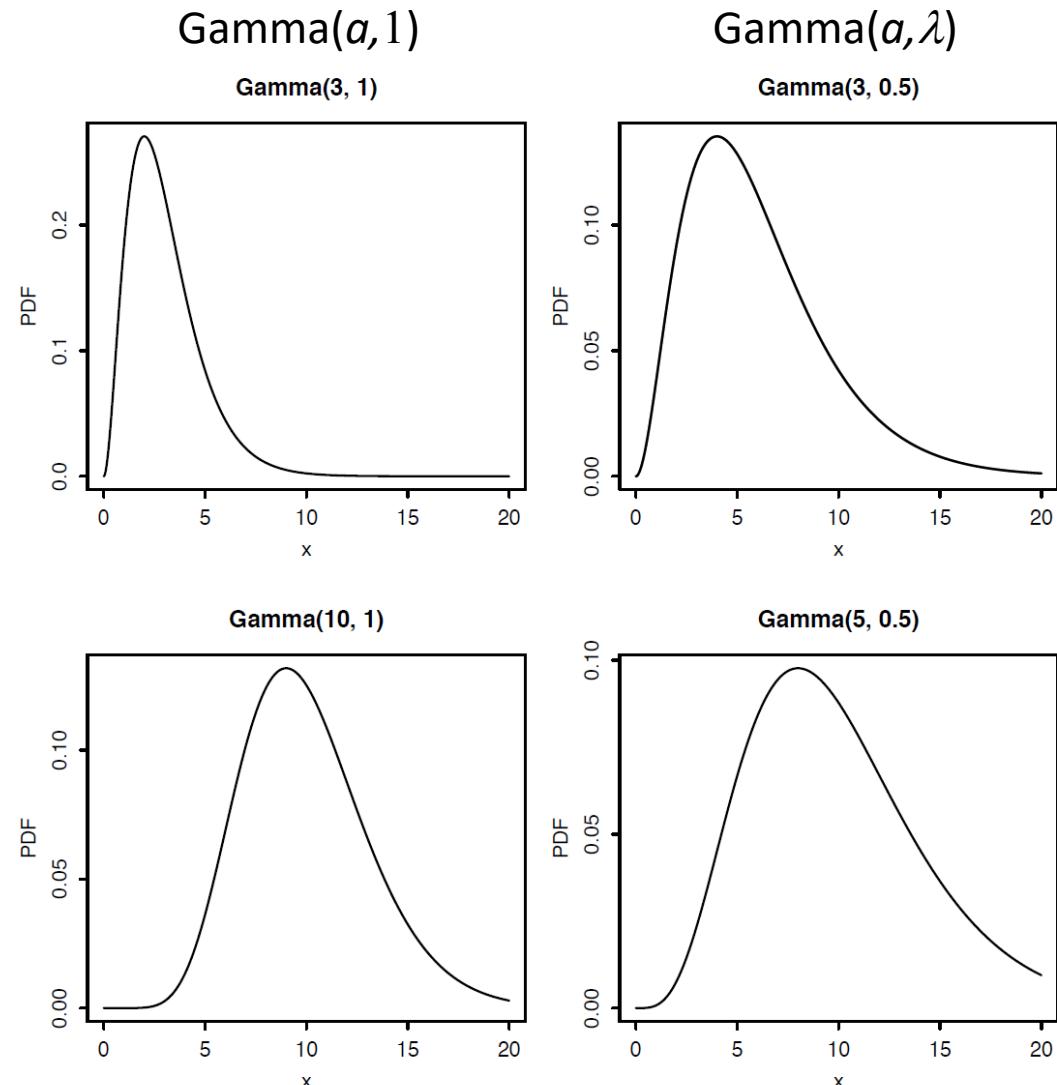
- For the more general gamma distribution $Y = X/\lambda \sim \text{Gamma}(a, \lambda)$, by simple transformation, we obtain:

$$\text{Mean: } E\{Y\} = \frac{1}{\lambda} E\{X\} = \frac{a}{\lambda}$$

$$\text{Second Moment: } E\{Y^2\} = \frac{1}{\lambda^2} E\{X^2\} = \frac{a(a+1)}{\lambda^2}$$

$$\text{Variance: } \text{Var}\{Y\} = \frac{1}{\lambda^2} \text{Var}\{X\} = \frac{a}{\lambda^2}$$

-> See Appendix A for details

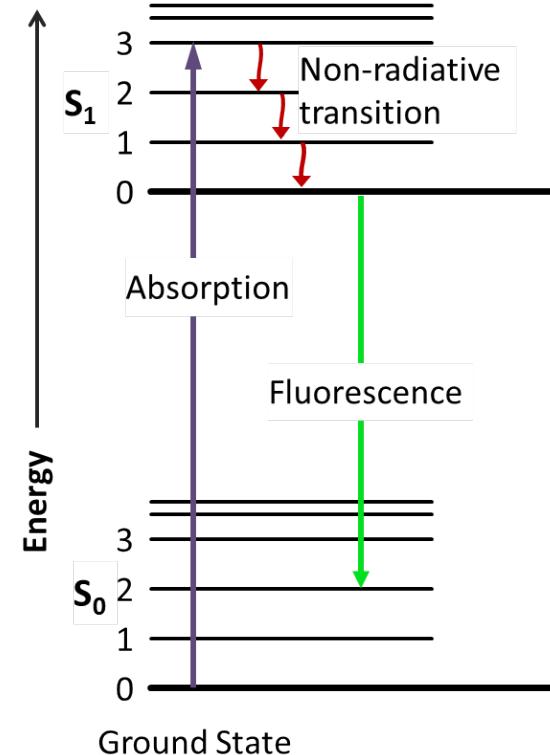


-> calculate mean/variance for some examples

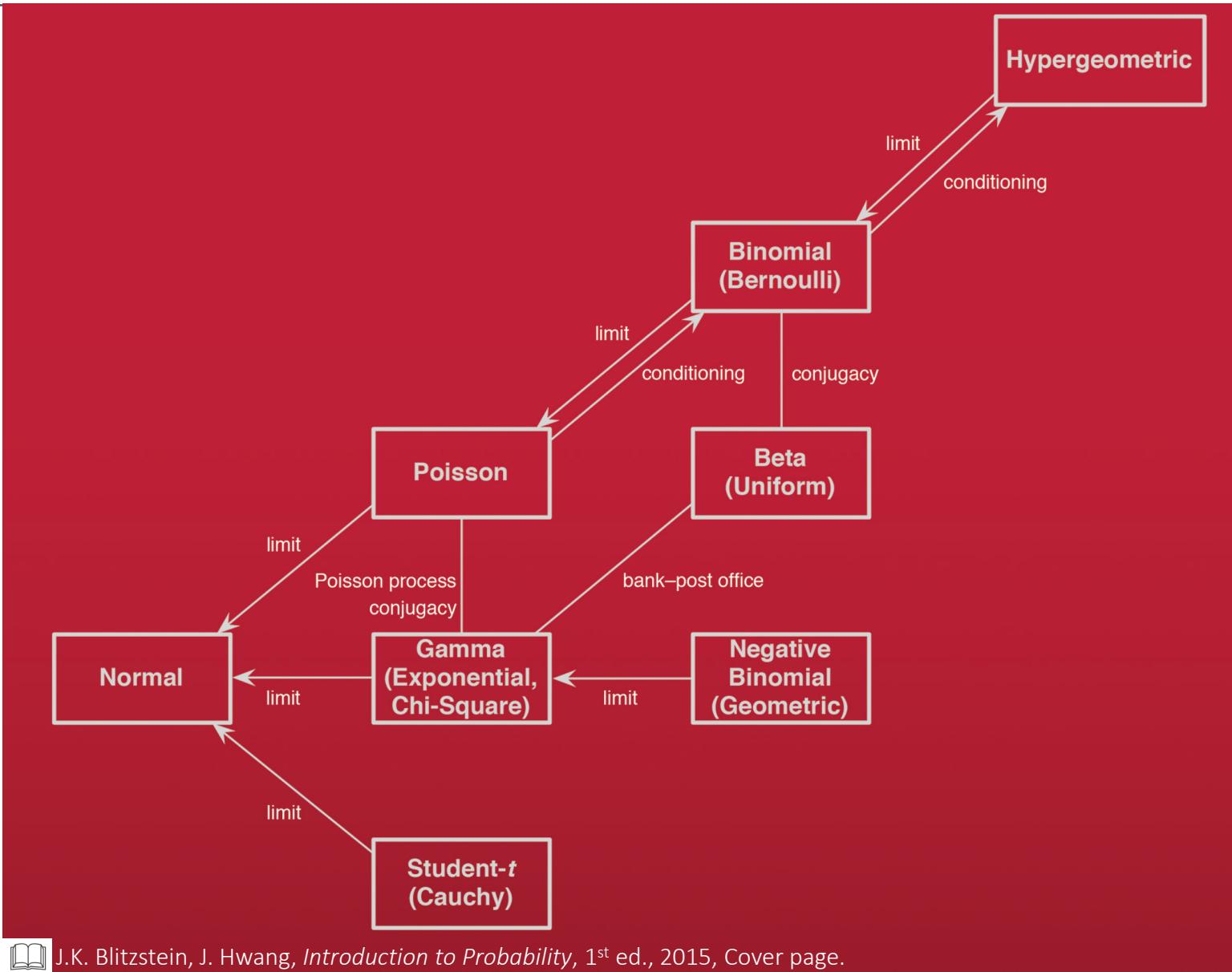
Take-home Messages/W9-1

- *Random Variables (RVs):*
 - Distributions: Uniform, Gaussian, Binomial
 - Distributions: Poisson \leftrightarrow Exponential
... and their PDF, CDF, Mean, Variance
- Practical examples!
 - Scintillation light (two crystals in coincidence) – combination of distributions \leftrightarrow experimental set-up
 - Timing jitter – combination of distributions \leftrightarrow experimental set-up
 - *Poisson Distribution vs. Light Sources*
 - Fluorescence lifetime & exponential decay
 - Scintillation light (one single crystal) \leftrightarrow experimental set-up

Photon detections as function of time for a) antibunched, b) random, and c) bunched light



Probability distributions – Connections & the Big Picture



J.K. Blitzstein, J. Hwang, *Introduction to Probability*, 1st ed., 2015, Cover page.

Outline

8.1 Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0 Random Variables/2

9.1 **Random Processes**

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

9.1.1 Random Process

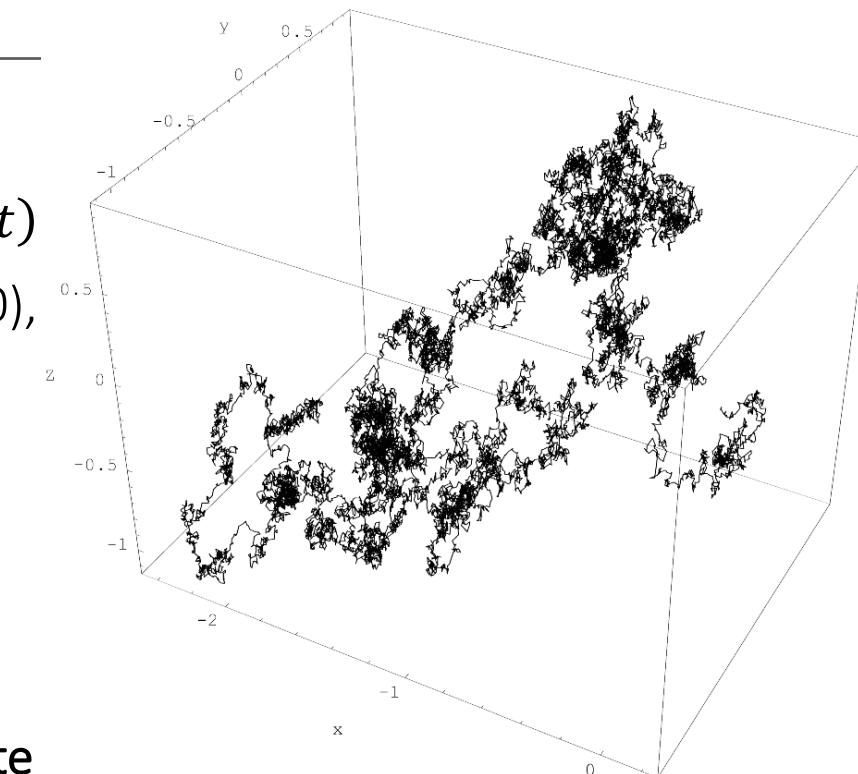
- A **Random (or stochastic) Process (RP)** is a **time-varying function** that assigns the outcome of a random experiment to each time instant $X(t)$

Example: a current fluctuating due to thermal noise (-> Week 10), the growth of a bacterial population, the movement of a gas molecule [Wikipedia *Stochastic Process*]

- For fixed t , a Random Process is a Random Variable
- A Random Process can therefore be viewed as a **collection of an infinite number of Random Variables**. Given that $X_i = X(t_i)$:

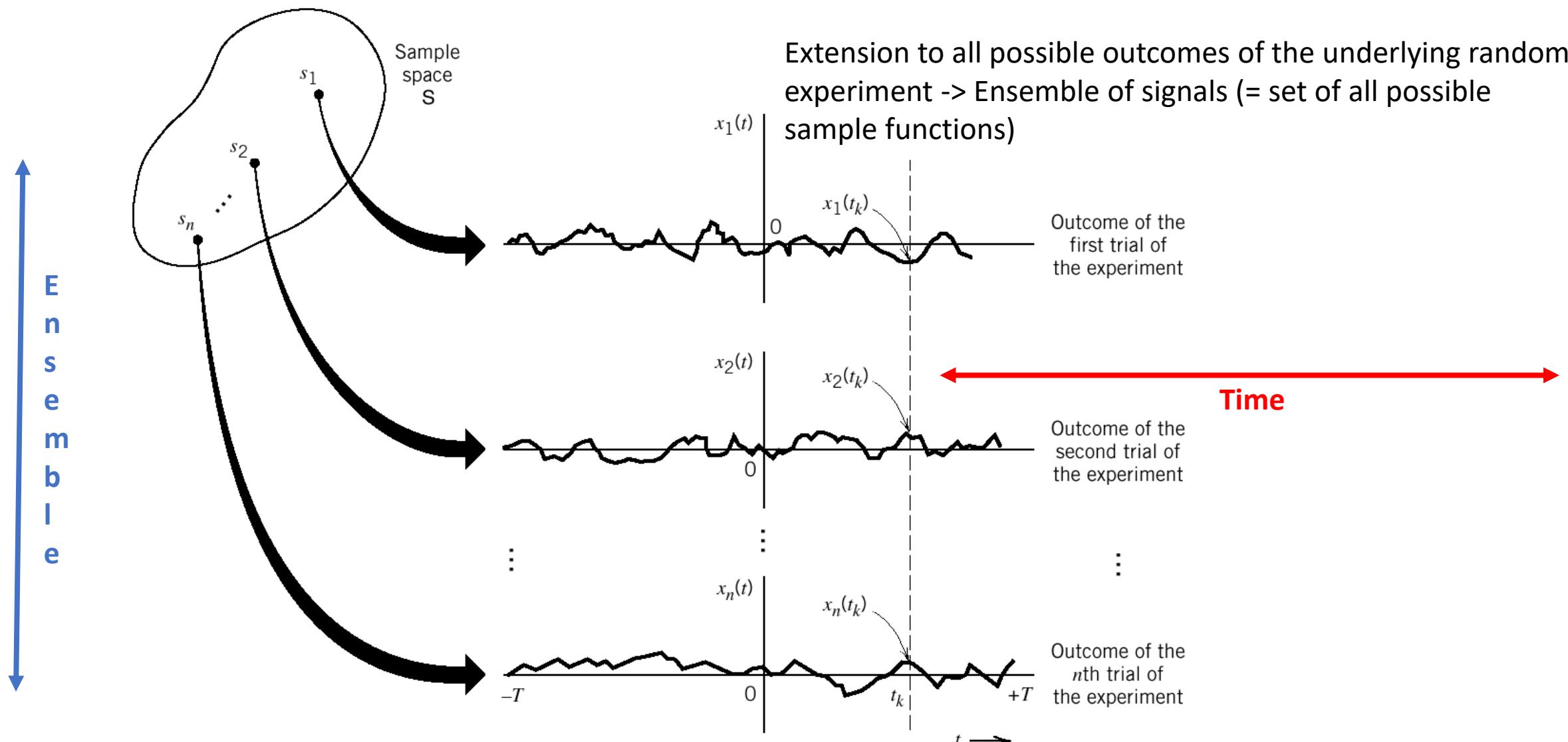
joint PDF: $f_X(X_1, X_2, \dots, X_n, t_1, t_2, \dots, t_n)$

- A Random Process can be either continuous or discrete



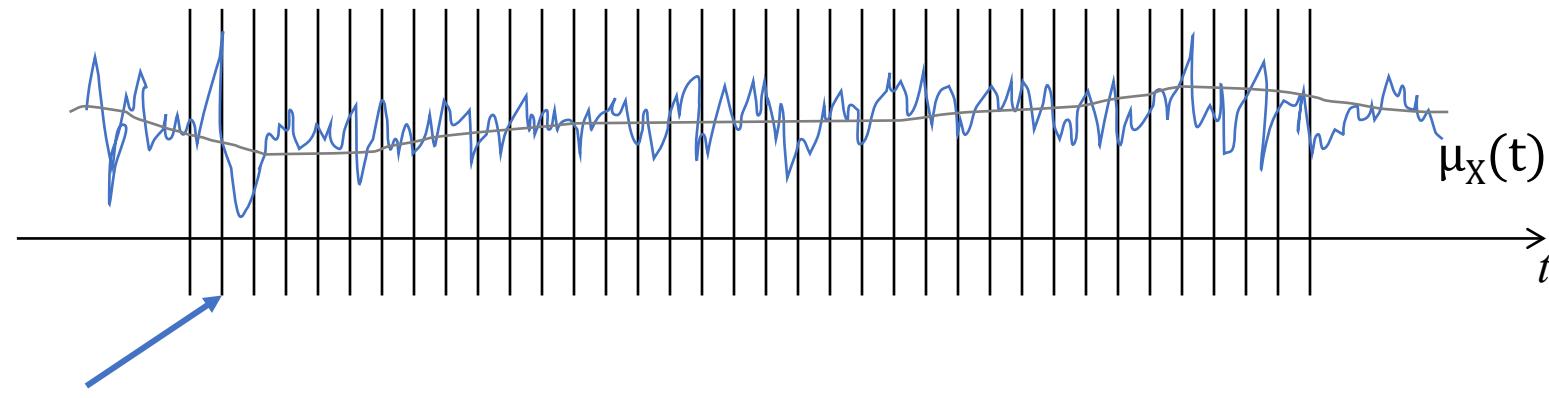
Original uploader was Sullivan.t.j at English Wikipedia. – 3D Brownian motion process. This mathematical image was created with Mathematica., CC BY-SA 3.0, <https://commons.wikimedia.org/w/index.php?curid=2249027>

9.1.1 Random Process – Example



9.1.1 Random Process – Example

- Example: **Noise** is generally modeled as a random process, i.e. a collection of random variables, one for each time instant t in interval $]-\infty, +\infty[$



9.1.1 Random Process (contd.) – Characterization/1

- A Random Process is characterized by the same functions already explained for RVs, but which **now depend on t** , i.e.:

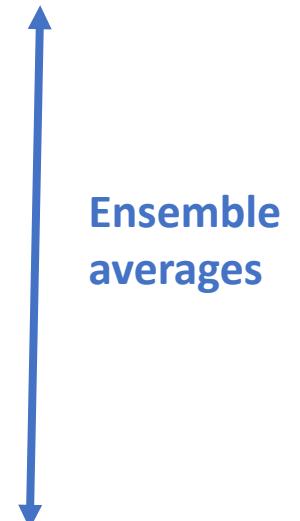
CDF: $F_X(x, t) = P\{X(t) \leq x\}$ $X(t)$ = random variable at time t

PDF: $f_X(x, t) = \frac{dF_X(x, t)}{dx}$

Mean: $m_X(t) = \overline{X(t)} = E\{X(t)\} = \int_{-\infty}^{\infty} x f_X(x, t) dx$

Second Order Moment: $\overline{X^2(t)} = E\{X^2(t)\} = \int_{-\infty}^{\infty} x^2 f_X(x, t) dx$

Variance: $Var\{X(t)\} = E \{(X(t) - m_X(t))^2\} = \int_{-\infty}^{\infty} (x - m_X(t))^2 f_X(x, t) dx$



9.1.1 Random Process (contd.) – Characterization/2

- However, in order to characterize a RP, we need to introduce two more functions, e.g. to indicate how rapidly a RP changes in time:

Auto – covariance: $C_{XX}(t_1, t_2) = Cov\{X(t_1), X(t_2)\}$

Auto – correlation: $K_{XX}(t_1, t_2) = E\{X(t_1) \cdot X(t_2)\}$

NB: $C_{XX}(t_1, t_2) = E\{[X(t_1) - m_X(t_1)][X(t_2) - m_X(t_2)]\} =$
 $= K_{XX}(t_1, t_2) - m_X(t_1)m_X(t_2)$

- In a similar way we can also define:

Cross – covariance: $C_{XY}(t_1, t_2) = Cov\{X(t_1), Y(t_2)\}$

Cross – correlation: $K_{XY}(t_1, t_2) = E\{X(t_1) \cdot Y(t_2)\}$

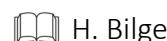
$X(t_1)$ = random variable at time t_1

$X(t_2)$ = random variable at time t_2

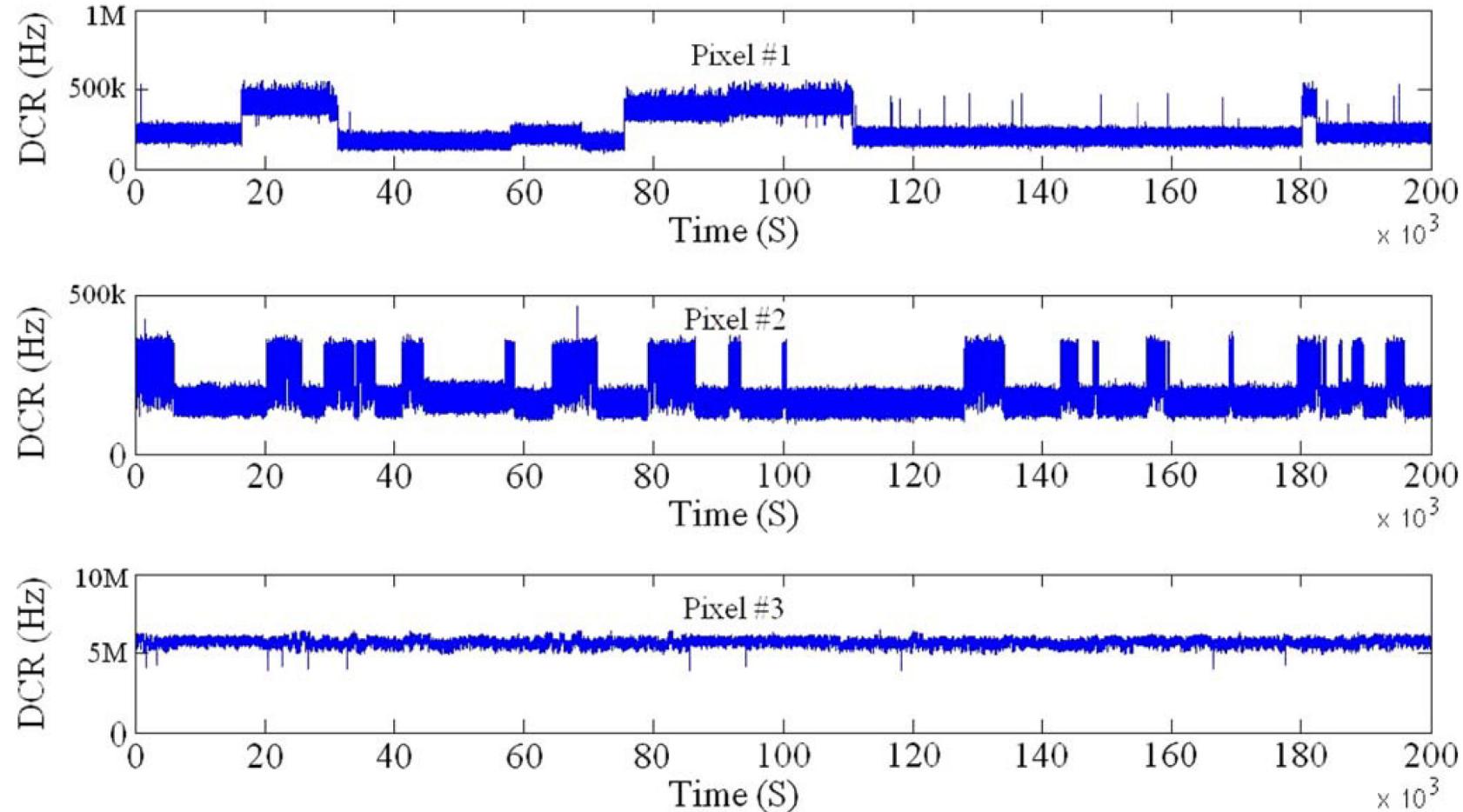
NB: in general, the *autocorrelation* is the correlation of the signal with a delayed copy of itself (similarity between observations as a function of the time lag between them)
[Wikipedia “autocorrelation”]

Cross-correlation: same but between two series

NB: extended here to two RPs X and Y



9.1.1 Random Process (contd.) – Example, non-stationary



M. A. Karami et al., *Random Telegraph Signal in Single-Photon Avalanche Diodes*, International Image Sensor Workshop, Bergen, 2009

9.1.2 Stationary Random Process

- We characterize the RP on how their statistical properties change in time. If they do not change, we call the RP **stationary**. Hence:

Ensemble averages

$$f_X(x, t) = f_X(x)$$

$$m_X(t) = \overline{X(t)} = E\{X(t)\} = \int_{-\infty}^{\infty} x f_X(x, t) dx = \mu_X$$

$$Var\{X(t)\} = E\{(X(t) - m_X(t))^2\} = \int_{-\infty}^{\infty} (x - m_X(t))^2 f_X(x, t) dx = \sigma^2$$

- Weaker form: in **Wide-Sense Stationary RPs**, in addition to a constant mean, the autocorrelation function only depends on the time difference, but not on the absolute position in time:

$$K_{XX}(t, t + \tau) = K_{XX}(\tau) \quad (\text{or equivalently } K_{XX}(t_1, t_2) = K_{XX}(t_2 - t_1))$$

Random Processes

Wide-sense stationary

Strict-sense stationary

???

**WSS random process
does not drift with
time**

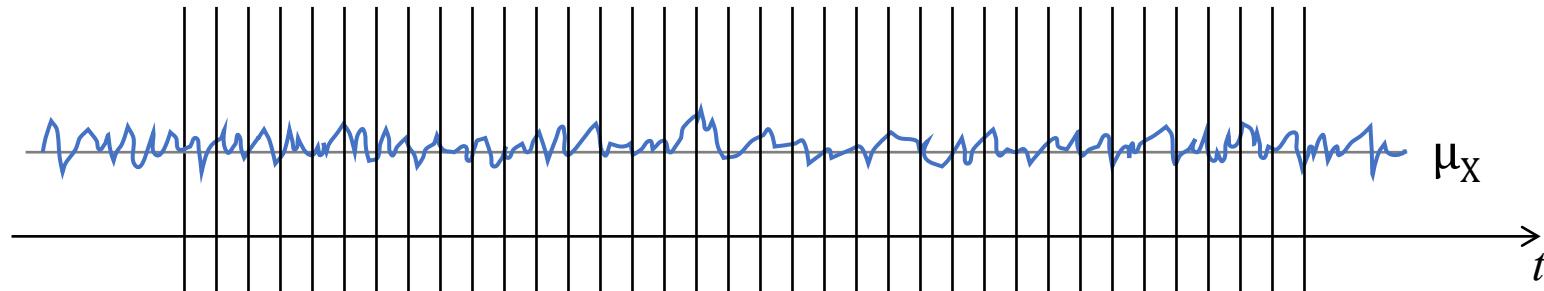
Ex

9.1.2 Stationary Random Process – Example

$$f_X(x, t) = f_X(x)$$

$$m_X(t) = \overline{X(t)} = \mu_X$$

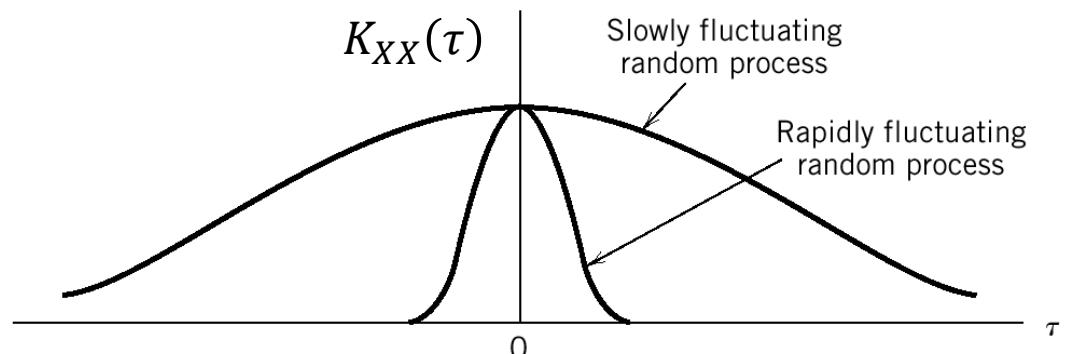
$$Var\{X(t)\} = \sigma^2$$



9.1.2 Stationary Random Process (contd.)

- For a **Wide-sense Stationary Random Process** $X(t)$, the autocorrelation function has the following properties:

- $K_{XX}(t_1, t_1) = K_{XX}(t_2, t_2) = K_{XX}(0) = E\{X^2(t)\} = \overline{X^2(t)} \geq 0 \ (\Rightarrow K_{XX}(0) = \text{total power of random signal } X(t), \text{ does not change in time})$
- $K_{XX}(\tau) = K_{XX}(-\tau)$
- $$\lim_{|\tau| \rightarrow \infty} K_{XX}(\tau) = \lim_{|\tau| \rightarrow \infty} E\{X(t) \cdot X(t + \tau)\} = E\{X(t)\} E\{X(t + \tau)\} = \overline{X(t)}^2 \ (\text{example: average or DC power of random signal } X(t))$$
- $|K_{XX}(\tau)| \leq |K_{XX}(0)| \quad \text{for all } \tau$



9.1.3 Ergodicity

- “A Random Process is **ergodic** if any sample function of the process takes all possible values in time with the same relative frequency that an ensemble will take at any given instant”. Basically, its statistical properties can be deduced from a single, sufficiently long, random sample.
[Wikipedia] Hence:

$$\overline{X(t)} = E\{X(t)\} = \lim_{T \rightarrow \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt = \langle X(t) \rangle$$

Time average

Ensemble function

$$K_{XX}(\tau) = E\{X(t) \cdot X(t + \tau)\} = \lim_{T \rightarrow \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^*(t - \tau) dt = \mathcal{K}_{XX}(\tau)$$

where $\langle X(t) \rangle$ is the time-average mean of the RP $X(t)$ and $\mathcal{K}_{XX}(\tau)$ is the time-average autocorrelation function.

Random Processes

Wide-sense stationary

Strict-sense stationary

Ergodic

“The ergodic hypothesis is that personal experience over time of a single individual reflects the current statistics of the general population.”
(I. Vardi)

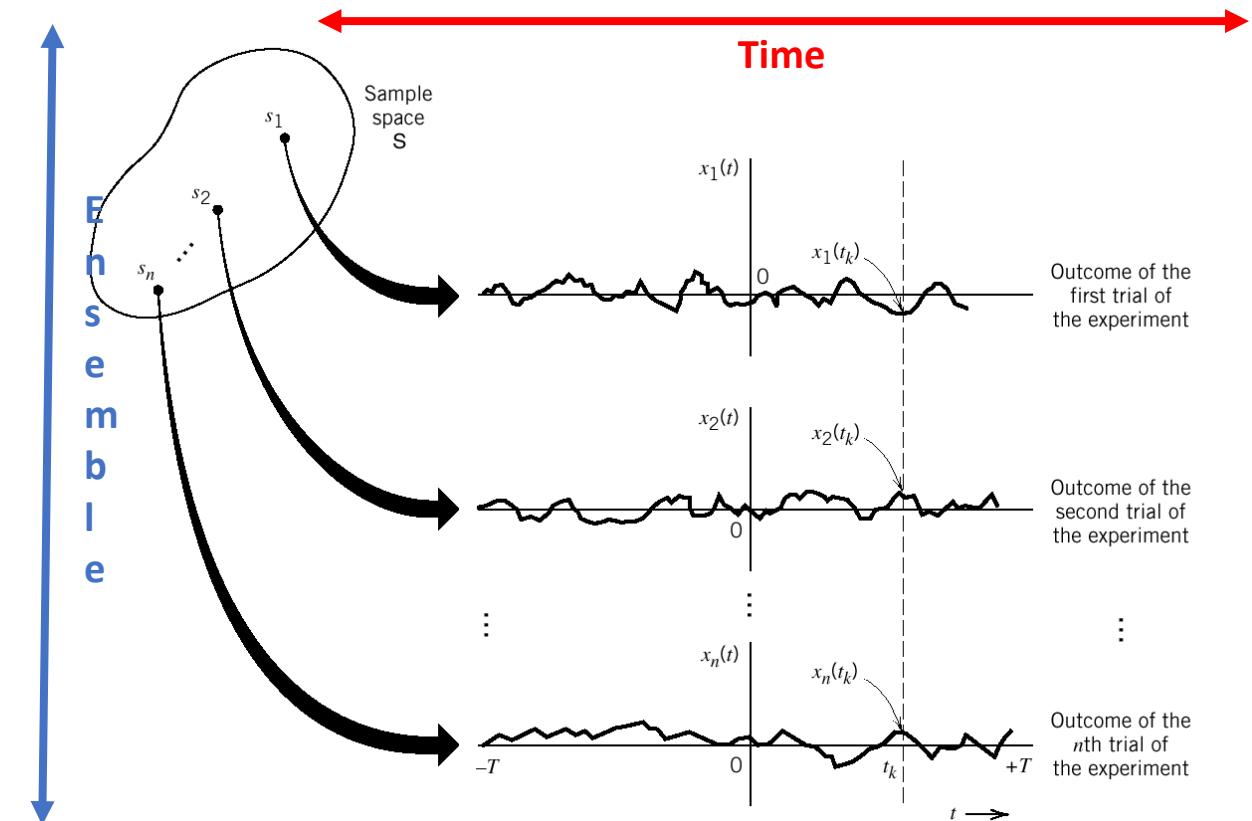
Take-home Messages/W9-2

- *Random Process:*

- Definition, Ensemble vs. Time
- CDF, PDF, Moments, Autocorrelation
- Wide-sense & strict-sense stationary
- *Ergodicity* Random Processes

Wide-sense stationary
Strict-sense stationary

Ergodic



Outline

8.1 Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0 Random Variables/2

9.1 Random Processes

9.2 **Central Limit Theorem**

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

9.2.1 Law of Large Numbers

- **Law of large numbers**: describes the behavior of the sample mean of i.i.d. random variables as the sample size grows
- Assume i.i.d. X_1, X_2, X_3, \dots with finite mean μ and finite variance σ^2

Sample Mean:
$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

- \overline{X}_n itself a random variable with

Mean:
$$E\{\overline{X}_n\} = \frac{1}{n} E\{X_1 + \dots + X_n\} = \frac{1}{n} (E\{X_1\} + \dots + E\{X_n\}) = \mu$$

Variance:
$$\begin{aligned} \text{Var}\{\overline{X}_n\} &= \frac{1}{n^2} \text{Var}\{X_1 + \dots + X_n\} \\ &= \frac{1}{n^2} (\text{Var}\{X_1\} + \dots + \text{Var}\{X_n\}) = \frac{\sigma^2}{n} \end{aligned}$$

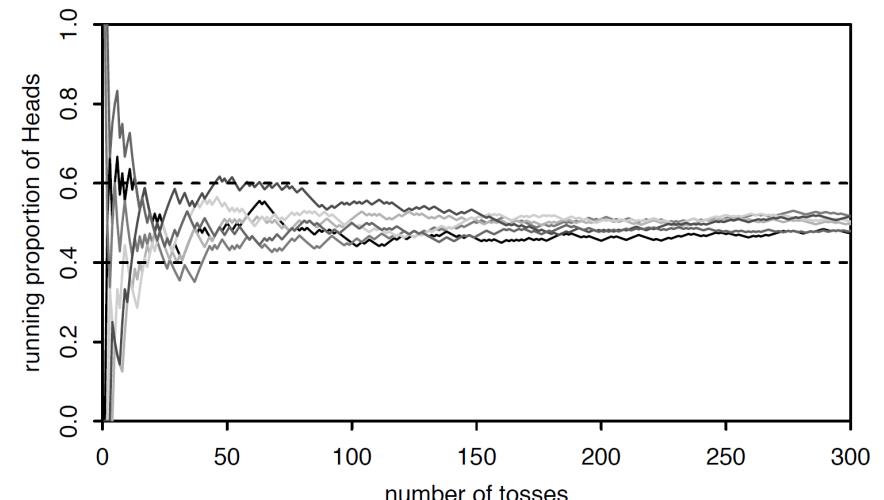
NB: i.i.d. = independent and identically distributed Random Variables, have the same PDF and are all mutually independent

9.2.1 Law of Large Numbers (contd.)

- Law of Large Numbers: as n grows, the sample mean \bar{X}_n converges to the true mean μ
- Essential for simulations, statistics, etc. – implicitly used when we use:
 - 1) the proportion of times that something happened as an approximation to its probability,
 - 2) the average value in the replications of some quantity to approximate its theoretical average.

Example: *improvement in LiDAR ranging precision...*

...when accumulating timing measurements, as $1/n$



9.2.2 Central Limit Theorem

- Law of Large Numbers: as n grows, the sample mean \bar{X}_n converges to the true mean μ

But with which distribution?

Sum of a large number of i.i.d. random variables has an approximately Gaussian (normal distribution),

- regardless of the distribution of the individual RVs (could be anything!)
- very weak assumptions.

$$\text{As } n \rightarrow \infty, \quad \sqrt{n} \left(\frac{\bar{X}_n - \mu}{\sigma} \right) \sim \mathcal{N}(0,1)$$

(i.e. the CDF of the l.h.s. approaches Φ , the CDF of the standard Gaussian distribution)

9.2.2 Central Limit Theorem (contd.)

- In other words: start with independent RVs from almost any distribution, discrete or continuous,
 - > add them up
 - > distribution of the resulting RV has a Gaussian shape!
- The CLT is an asymptotic result. Approximation: for large n

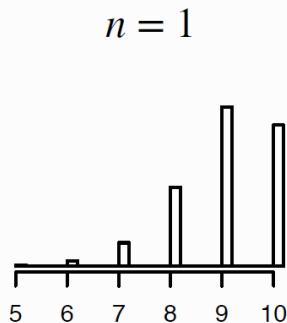
$$\sqrt{n} \left(\frac{\overline{X}_n - \mu}{\sigma} \right) \rightarrow \mathcal{N}(0,1)$$

- NB: The distribution of the X_j is still relevant, e.g. if highly skewed or multimodal, n might need to be very large before the Gaussian approximation becomes accurate.
- Conversely, if the X_j are already i.i.d. Normals (Gaussian), the distribution of \overline{X}_n is exactly $\mathcal{N}(\mu, \sigma^2/n)$ for all n .

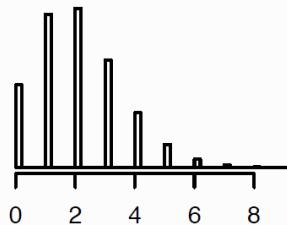
9.2.2 Central Limit Theorem - Example

Starting distribution

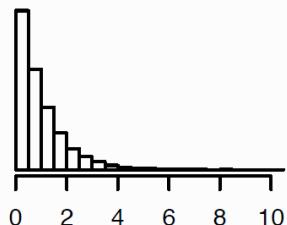
Bin(10, 0.9)



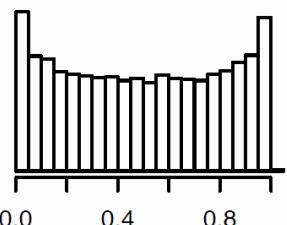
Pois(2)



Expo(1)



Beta(0.8, 0.8)

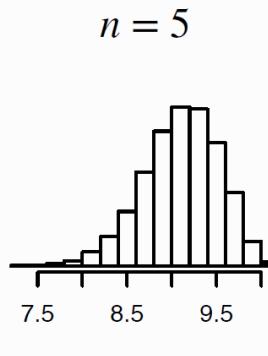
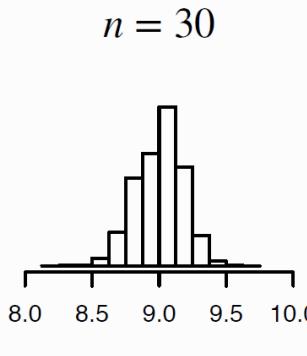
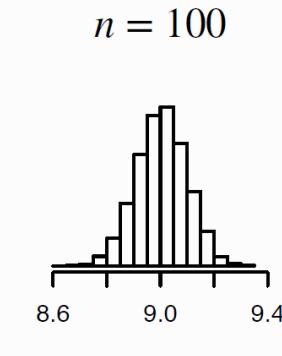
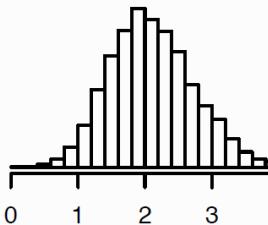
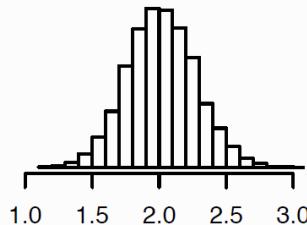
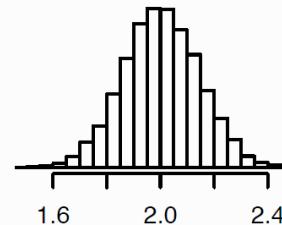
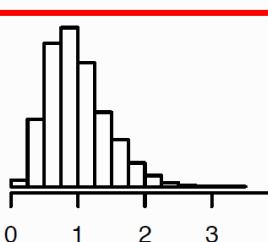
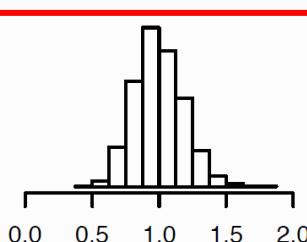
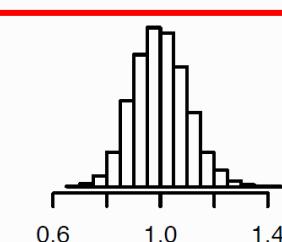
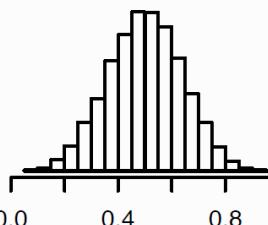
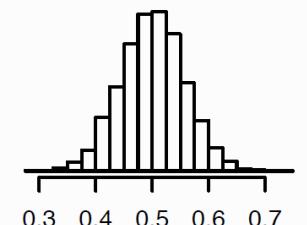
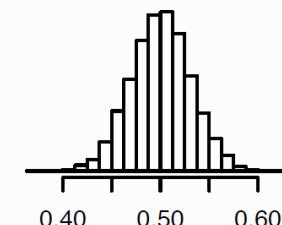


$n = 1$

$n = 5$

$n = 30$

$n = 100$



Histograms of the distribution of \bar{X}_n for different starting distributions of the X_j and increasing values of n .

Nothing else than Gamma($n, 1$)

J.K. Blitzstein, J. Hwang, *Introduction to Probability*, 1st ed., 2015, Chap. 10.3

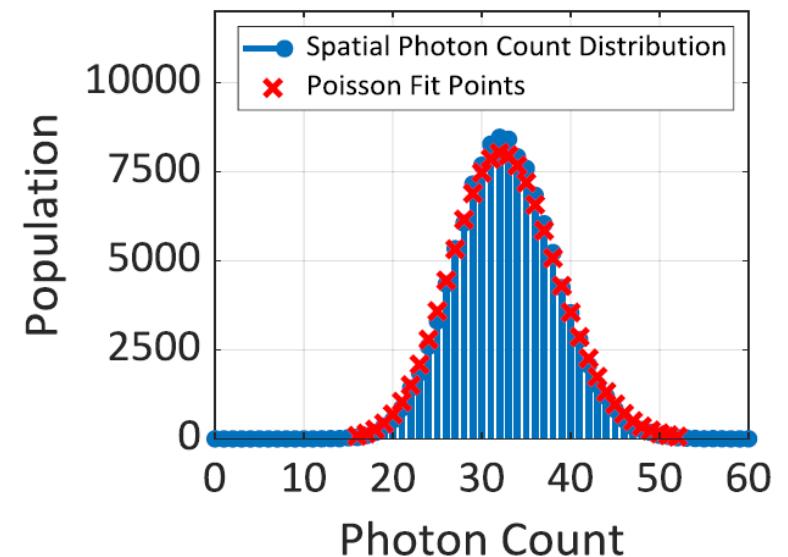
9.2.2 Central Limit Theorem - Example

- Poisson convergence to Gaussian: if

$$Y \sim \text{Pois}(n)$$

we can consider Y as a sum of n i.i.d. $\text{Pois}(1)$ RVs.

For large n : $Y \rightarrow \mathcal{N}(n, n)$



Outline

8.1 Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0 Random Variables/2

9.1 Random Processes

9.2 Central Limit Theorem

9.3 **Estimation Theory**

9.4 Accuracy, Precision and Resolution

9.3 Elements of Estimation Theory

- Estimation theory has the purpose to solve one problem: given a set of data

$$\{x_1, x_2, \dots, x_{N-1}\}$$

which depends on an unknown parameter vector θ , determine an estimator

$$\hat{\theta} = g(x_1, x_2, \dots, x_{N-1})$$

where g is some function.

- In other words, how do we use collected data to estimate unknown parameters of a distribution?

9.3 Elements of Estimation Theory (contd.)

- In general, if we assume that θ is deterministic, we will have a classical estimation problem. It can be solved in the following ways, and many more:
 1. Least Squares Estimator (LSE)
 2. Minimum Variance Unbiased Estimator (MVU)
 3. Maximum Likelihood Estimator (MLE)
 4. Best Linear Unbiased Estimator (BLUE)
 5. ...

9.3.1 Elements of Estimation Theory – Simple Mean Example

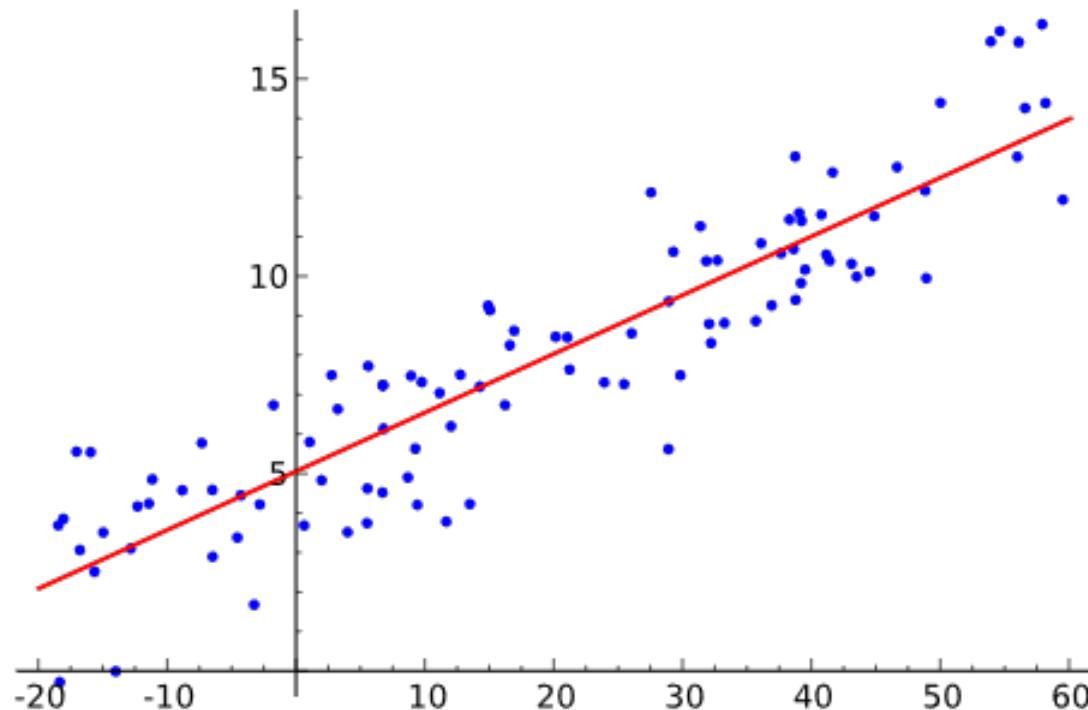
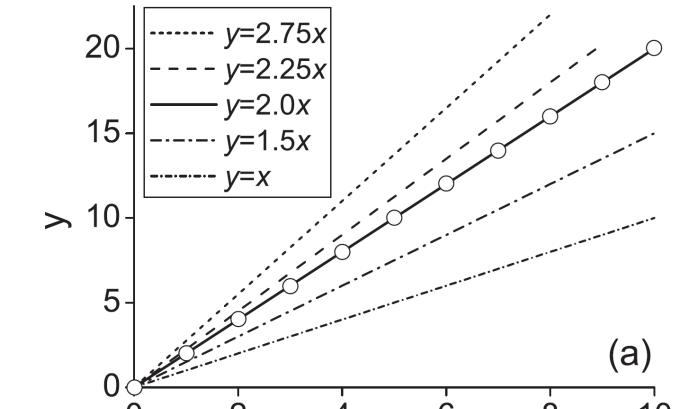
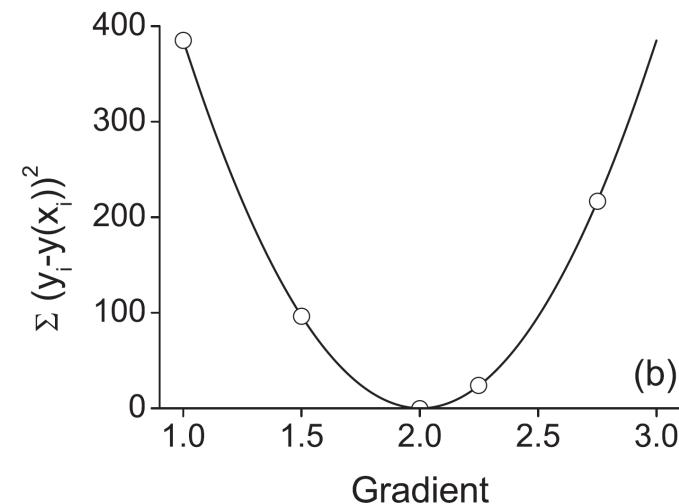
- Simple example: estimate the mean of a sample of i.i.d. RVs $X_1, X_2, X_3, \dots, X_n$

$$\text{Sample Mean: } \bar{X}_n = \frac{1}{n} \sum_{j=1}^n X_j$$

is an estimate of the *population mean* or *true mean*,
 $E\{X_j\}$ = the mean of the distribution from which the X_j were drawn.

9.3.2 Elements of Estimation Theory – LSE Example

Least Squares Estimator (LSE)

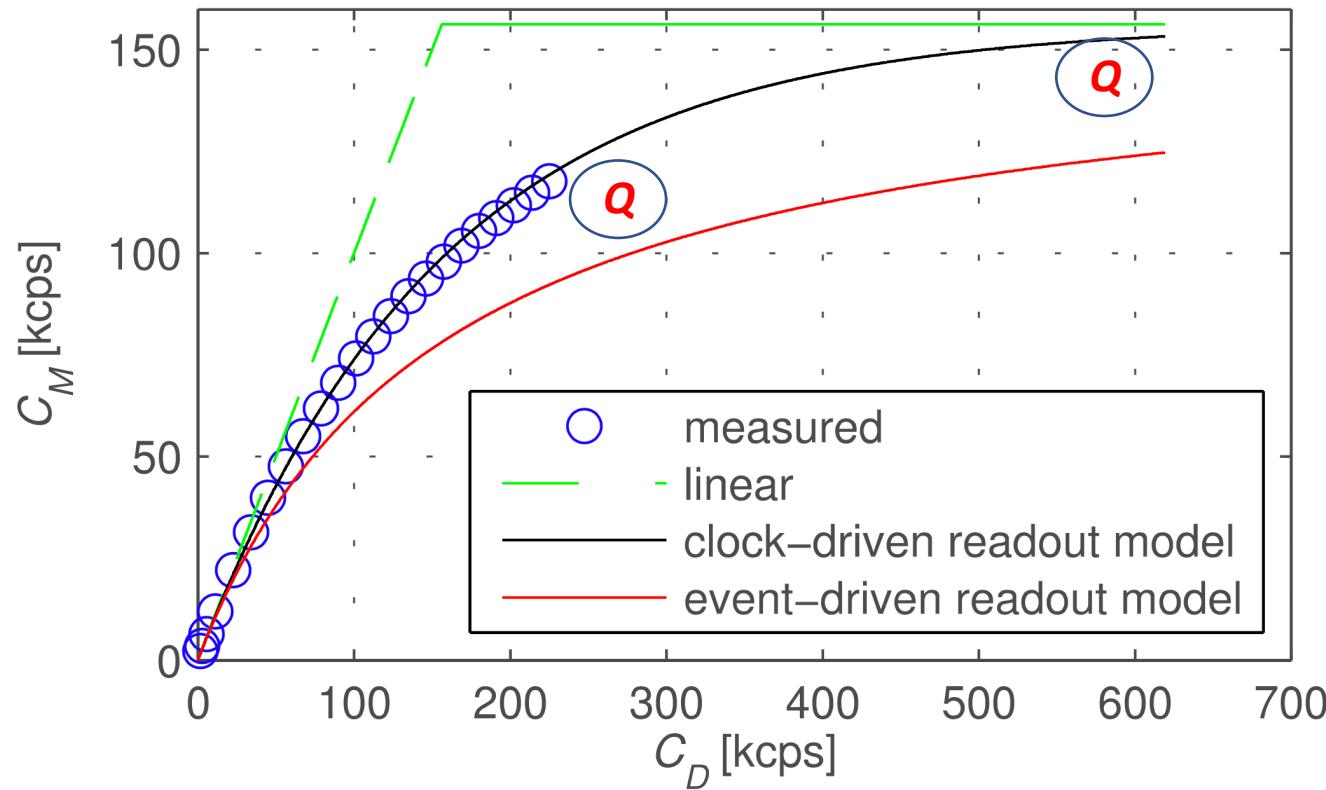


https://commons.wikimedia.org/wiki/File:Linear_regression.svg

I.G. Hughes, T.P.A. Hase, *Measurements and their Uncertainties*, 1st ed., 2010, Chap. 6.3

9.3.3 Elements of Estimation Theory – MLE Example

Maximum Likelihood Estimator (MLE) to correct for the exponential count loss in binary, clock-driven SPAD imagers



C_M : Measured count rate (externally)

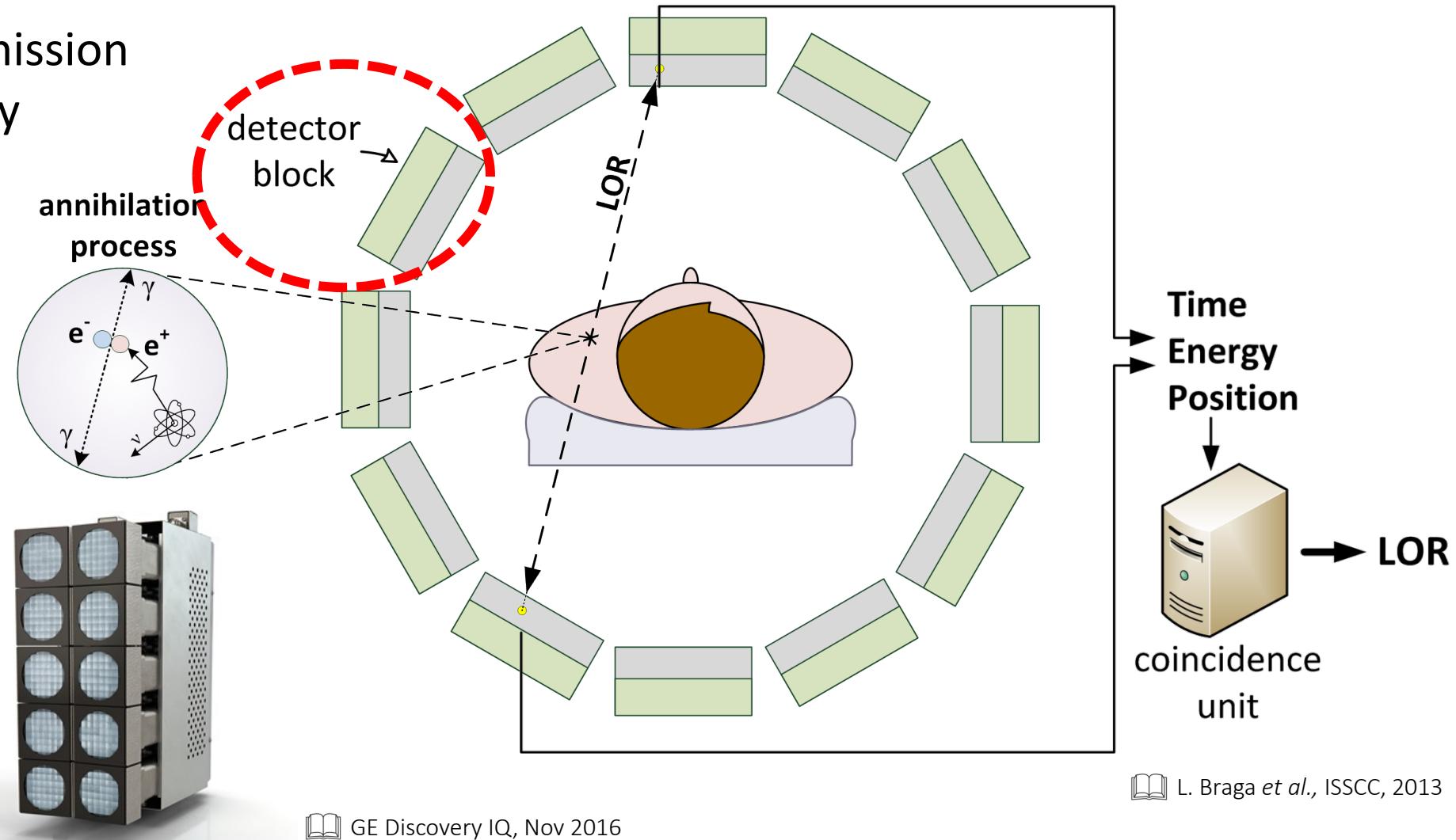
C_D : Detected count rate (internally)

$$E[C_M] = \frac{1 - e^{-C_D \times T_{\text{readout}}}}{T_{\text{readout}}}$$

$$E[C_D] = \frac{-\ln(1 - C_M \times T_{\text{readout}})}{T_{\text{readout}}}$$

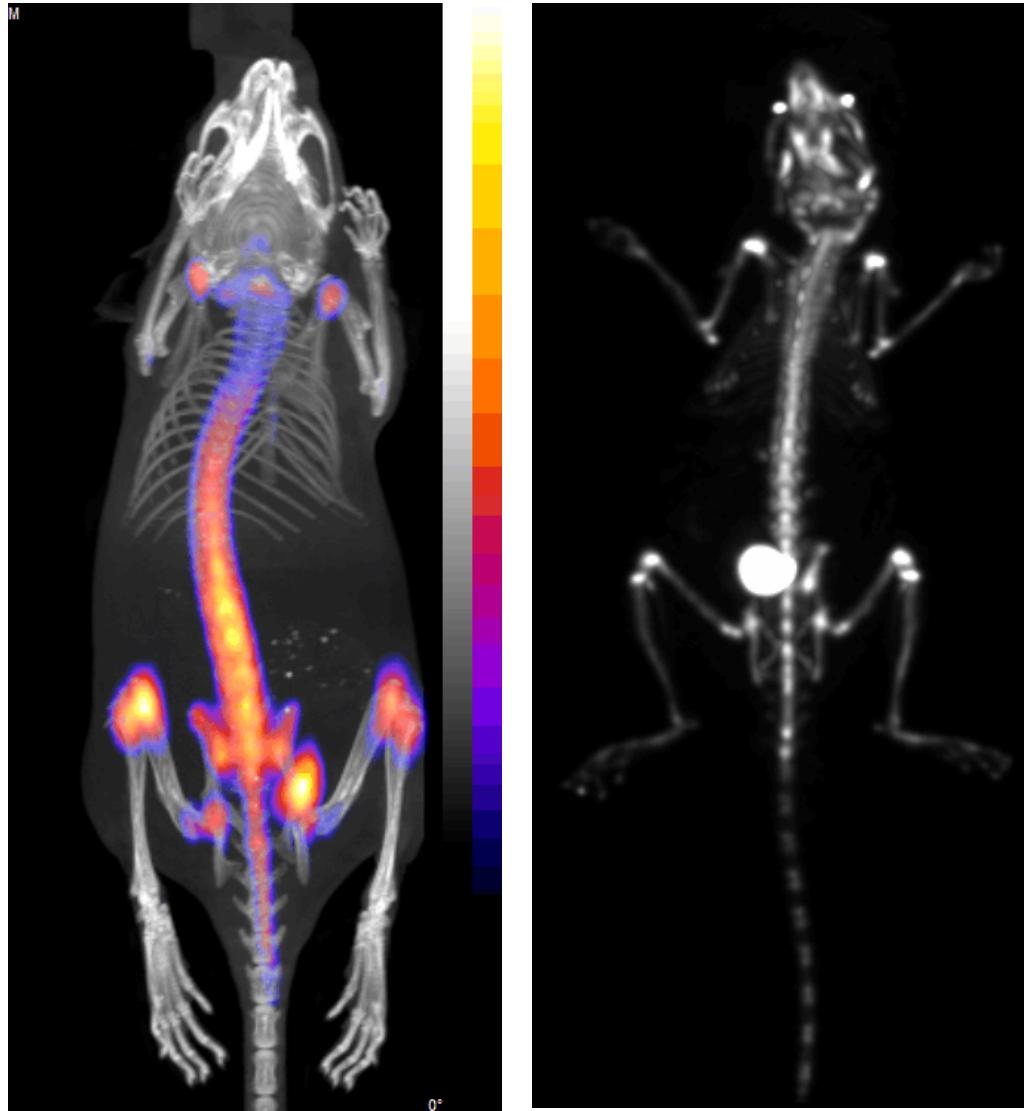
9.3.4 Elements of Estimation Theory – BLUE Example

Positron Emission Tomography Basics



9.3.4 Elements of Estimation Theory – BLUE Example

Positron Emission
Tomography
Reconstruction
Example

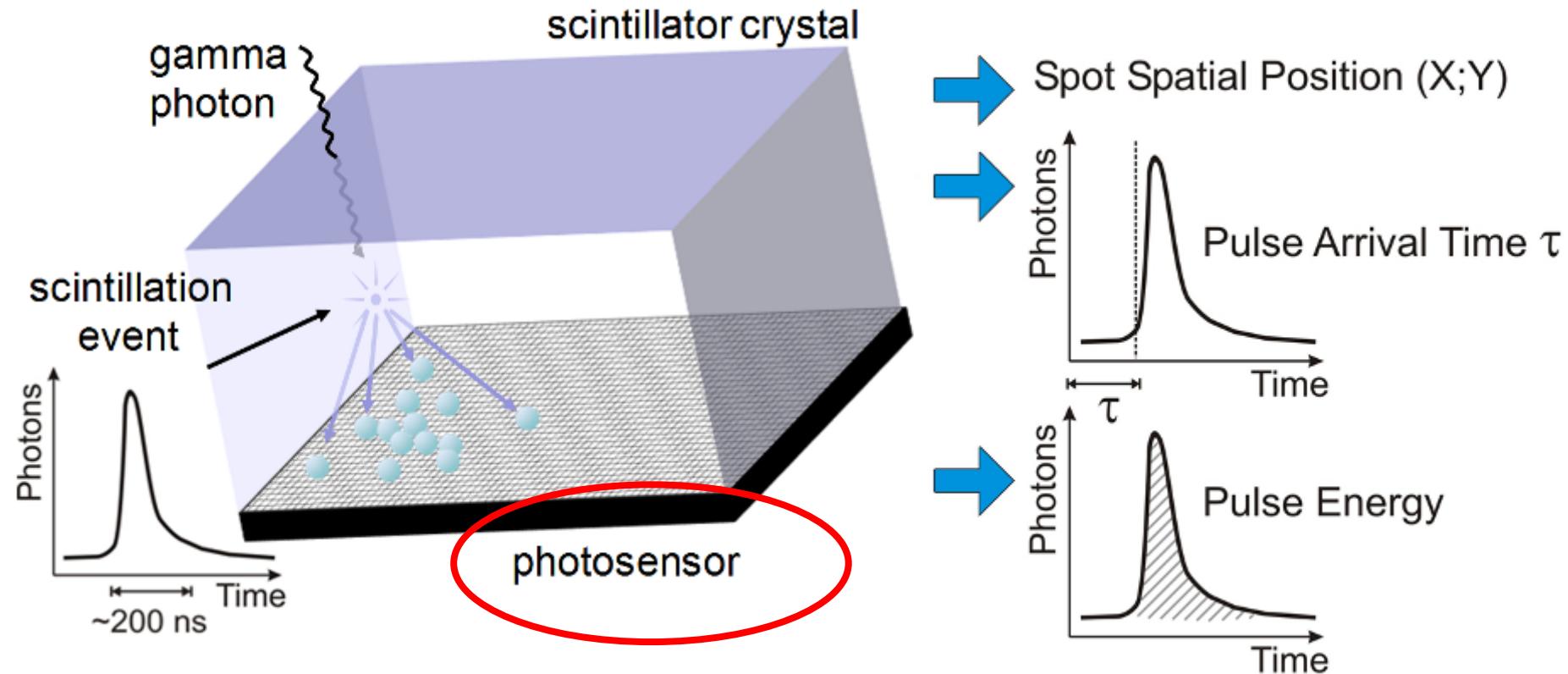


9.3.4 Elements of Estimation Theory – BLUE Example

Positron Emission Tomography Building Blocks & Main Variables

Problem: estimate the scintillation event time T_0 given a set of timing measurements t_q

Aim: obtain estimator with lowest variance (best timing precision)



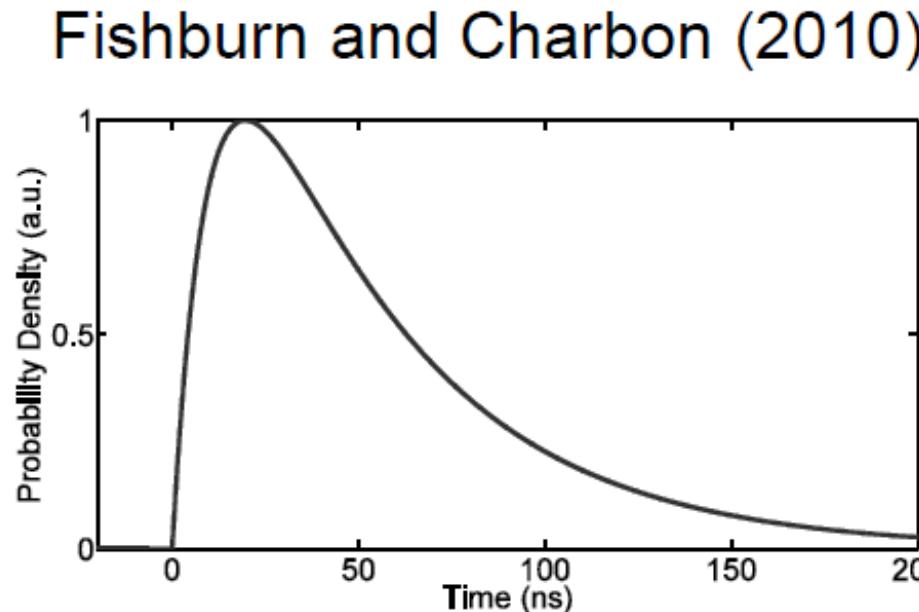
R. Walker *et al.*, IISW, 2013

Typ some 10^4 photons/scintillation, few 10^3 detected

9.3.4 Elements of Estimation Theory – BLUE Example

- The scintillation follows a double exponential decay.
- The transit time spread is modelled as additive noise.
- The best timing performance might not be obtained with the first photoelectron

LYSO: $\tau_{\text{rise}} \sim 70\text{ps}$, $\tau_{\text{fall}} \sim 30\text{ns}$



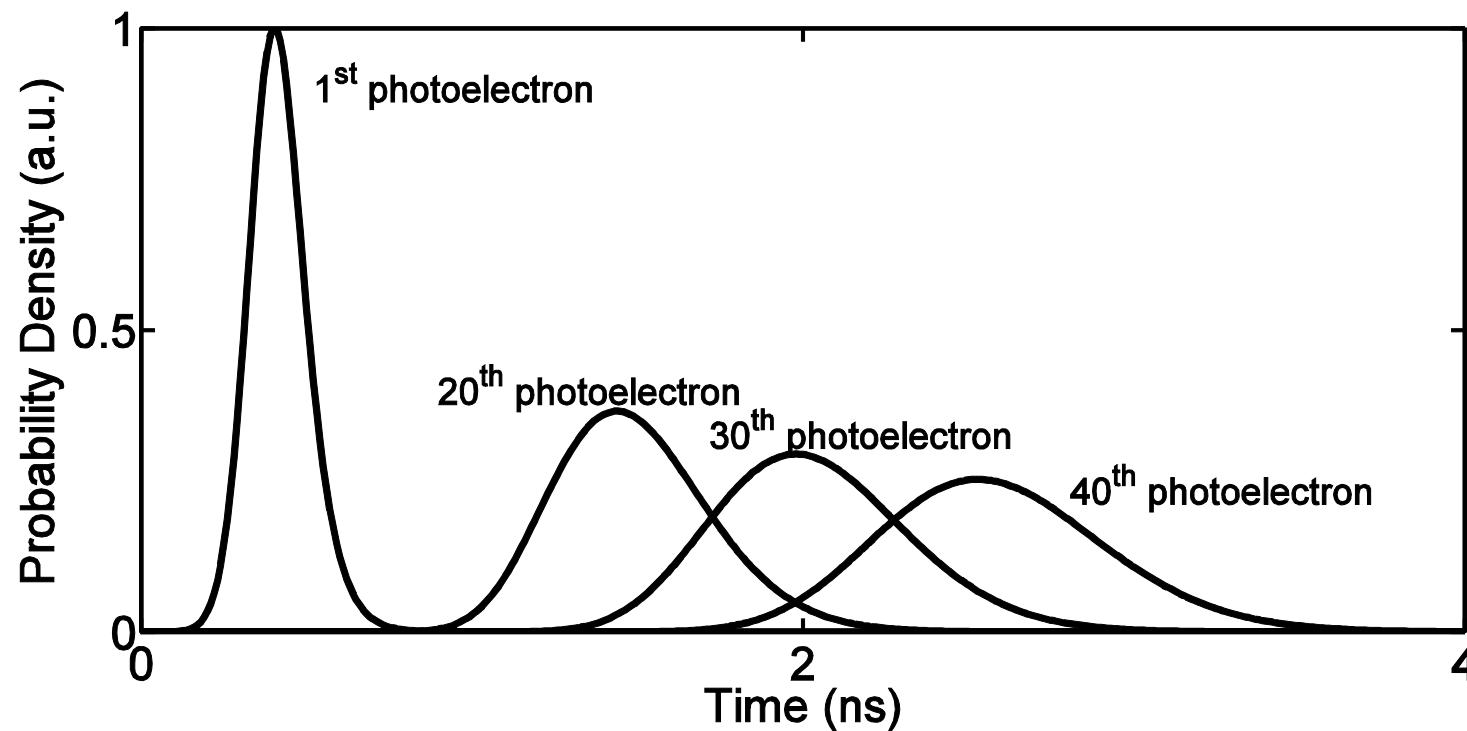
 M. Fishburn, E. Charbon, NSS-MIC, 2012

 M. Fishburn, E. Charbon, IEEE TNS(57), 2010

 E. Venialgo *et al.*, NSS-MIC, 2015

9.3.4 Elements of Estimation Theory – BLUE Example

Order Statistics



$$p_q(t) = \frac{R!}{(q-1)!(R-q)!} [1 - F(t)]^{(R-q)} [F(t)^{(q-1)}] f(t),$$

↑
PDF of the q^{th} photoelectron's time-of-registration.

$f(t), F(t) =$
scintillation
PDF/CDF
(previous slide)

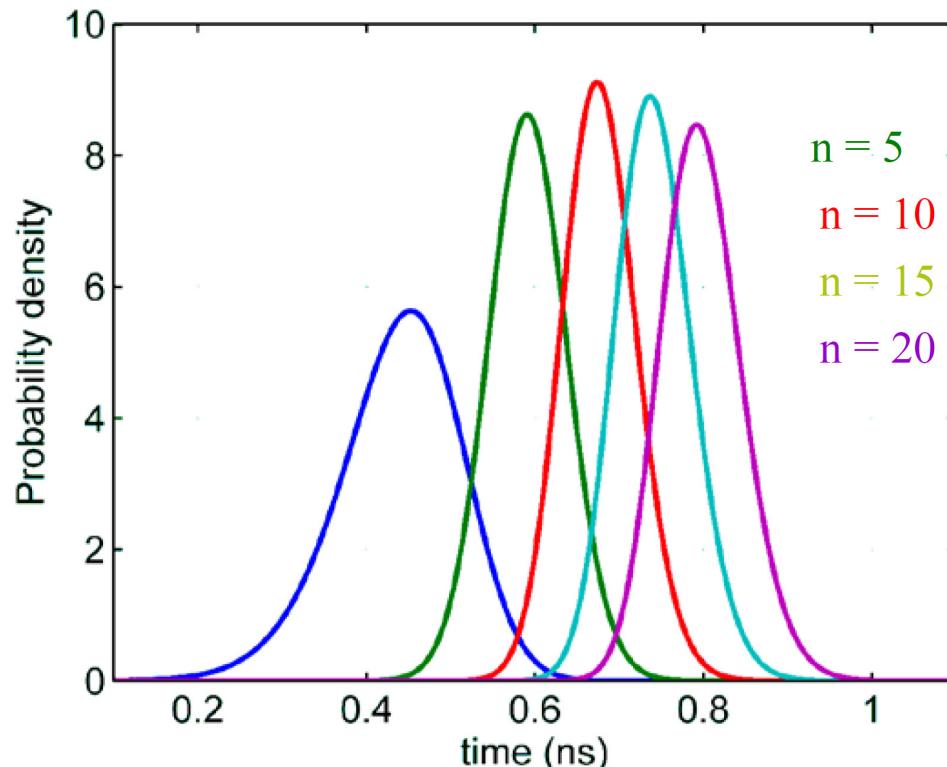
Order statistics implies
correlation between
timestamps

 J.K. Blitzstein, J. Hwang, *Introduction to Probability*, 1st ed., 2015, Theorem 8.6.4

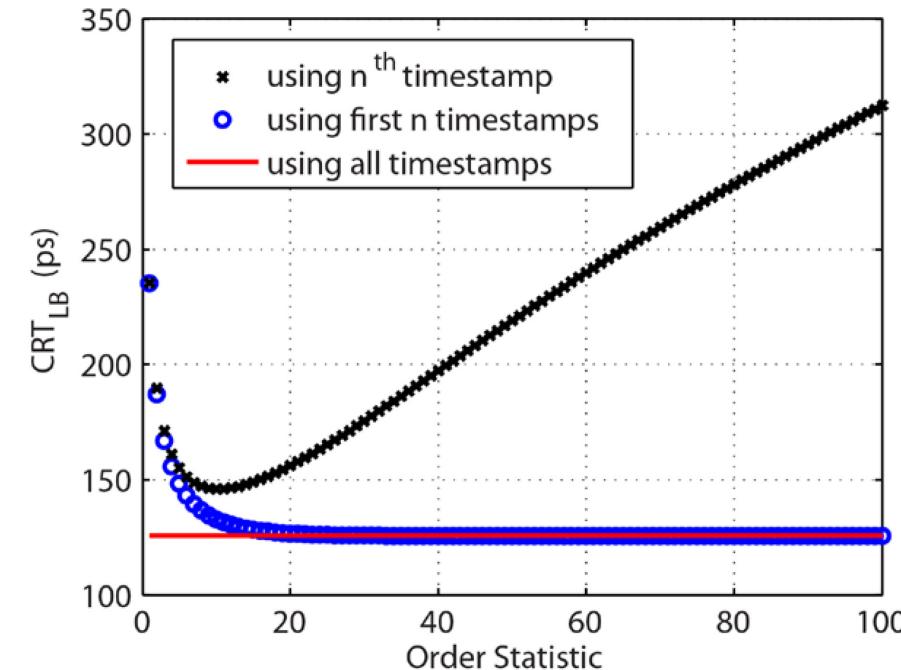
 E. Venialgo, E. Charbon *et al.*, PMB 2015

9.3.4 Elements of Estimation Theory – BLUE Example

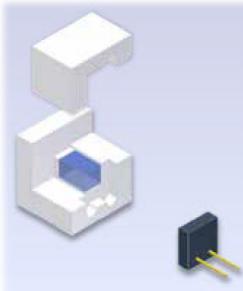
Timestamp for the n^{th} detected scintillation photon



Lower bound for LYSO:Ce



Lower bound on the CRT for LYSO:Ce on MPPC-S10362-33-050C, using the n^{th} , the first n , or all detected photons ("order statistics") for timing



Parameters:

$$\tau_r = 90 \text{ ps}$$

$$\tau_d = 44 \text{ ns}$$

$$\sigma = 120 \text{ ps}$$

$$N_{\text{det}} = 4700$$

Exemplary probability density functions for the n^{th} order statistic for LYSO:Ce on MPPC-S10362-33-050C

 D. Schaart, ANSRI 2016, 2016, Dublin, Ireland

9.3.4 Elements of Estimation Theory – BLUE Example

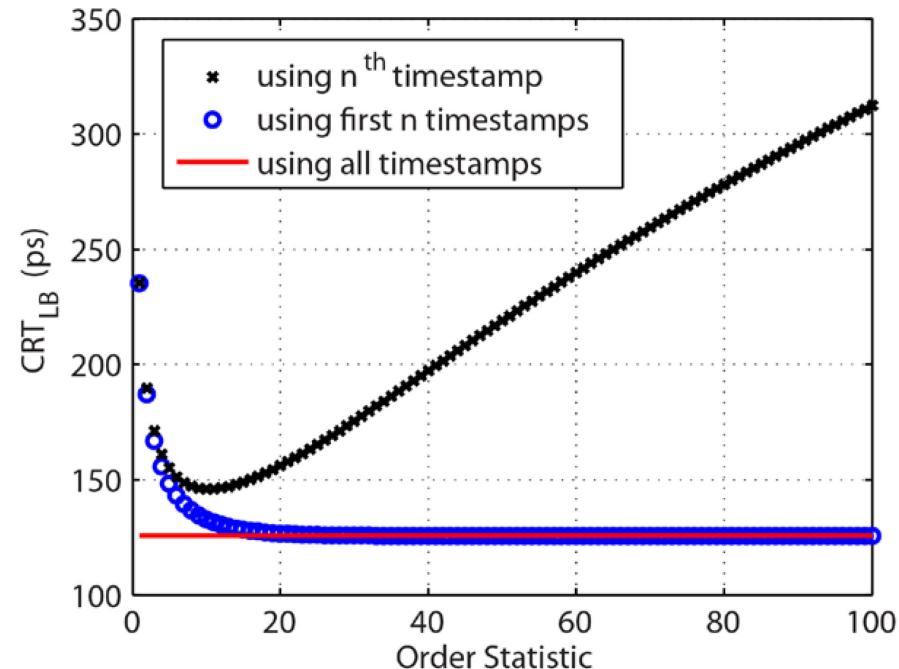
$$\hat{T}_0^{(p)} = \sum_{q=1}^Q t_q w_q^{(p)}, \quad p = 1, 2, 3. \quad \text{General estimator}$$

(p is one of 3 possible estimators)

Q

A simple estimator approach: $w_q^{(1)} = \frac{1}{Q}, \quad q = 1, \dots, Q$ Simple mean coeffs.

(p = 1 estimator)



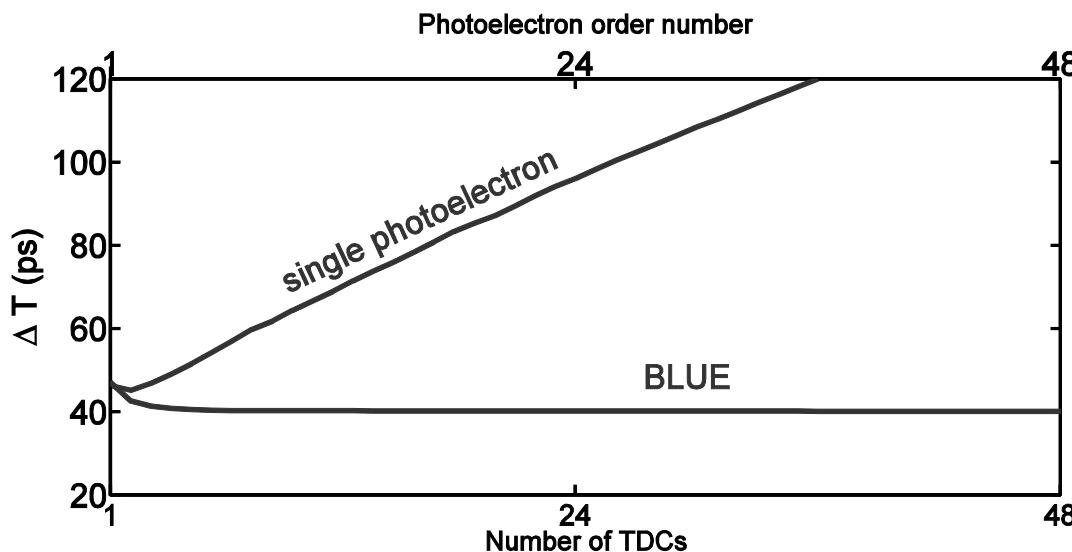
9.3.4 Elements of Estimation Theory – BLUE Example

- Assuming large number of measurements
- Other Estimator Approaches: **Best Linear Unbiased Estimator (BLUE)**

$$\hat{T}_0^{(p)} = \sum_{q=1}^Q t_q w_q^{(p)}, \quad p = 1, 2, 3. \quad \leftarrow \text{General estimator}$$

$$w_q^{(3)} = \frac{C^{-1}d}{\|C^{-1/2}d\|_2^2}, \quad \leftarrow \text{BLUE coeffs. (correlation matrix)}$$

($p = 3$ estimator)



Outline

8.1 Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0 Random Variables/2

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

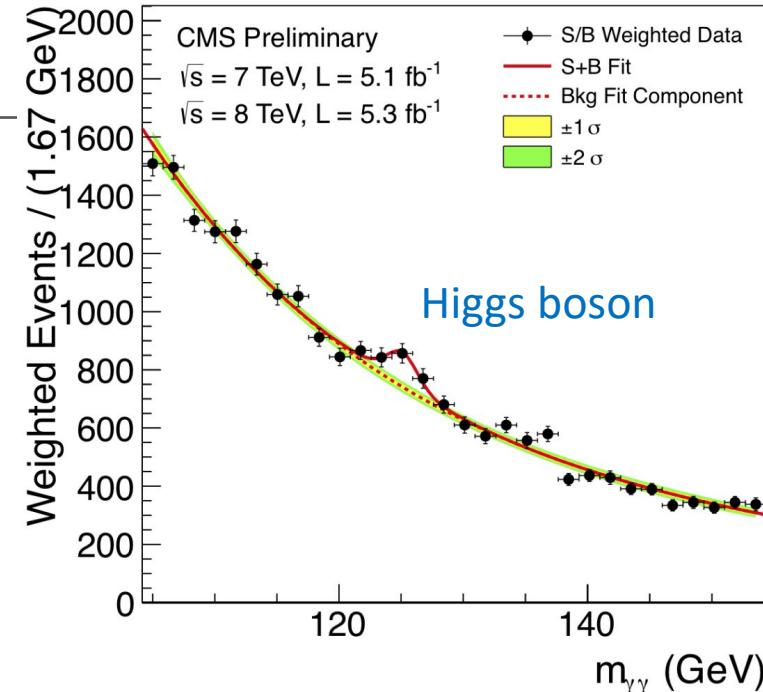
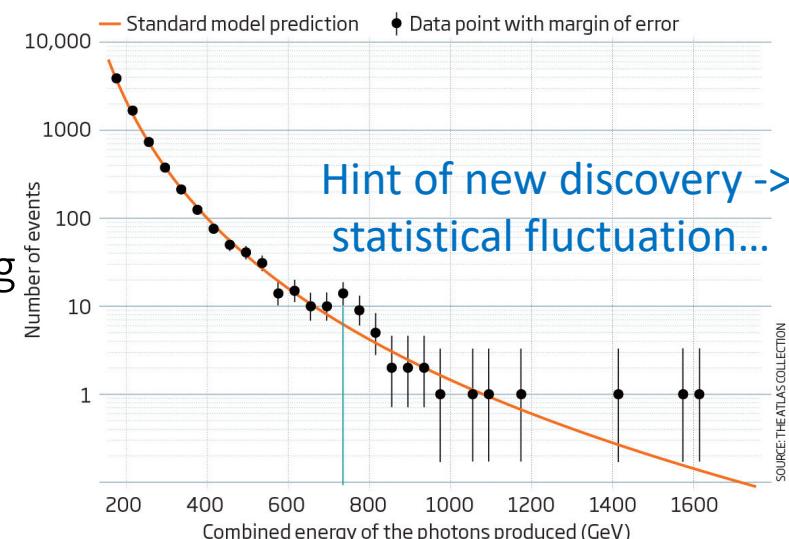
9.4 Accuracy, Precision and Resolution

9.4 Error Analysis

- The aim of error analysis is to quantify and record the errors associated with the inevitable spread in a set of measurements.
- **Confidence boundaries** represent the quality of the approximation given by the uncertainty.

Example: the six-sigma method, 5 sigma limit (CERN)

- Uncertainties can be associated to **random errors** (hence influencing the variance of the measurement distribution) or to **systematic errors** (acting on the mean value of the measurement distribution).



9.4.1 Accuracy

Accuracy -> mean

- The **accuracy** of a measurement gives a notion of the mean value of the set of measurements distribution with respect to the real value.
- An accurate measurements distribution will hence have a very **small systematic error**, but could be affected by a large spread in the data (high variance).
- Accuracy can be enhanced in the experimental real life by means of **calibration** techniques.

High Precision, High Accuracy

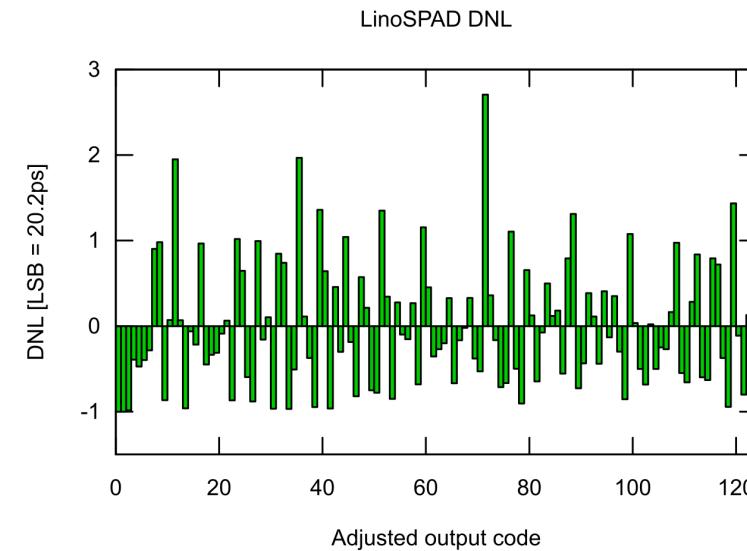
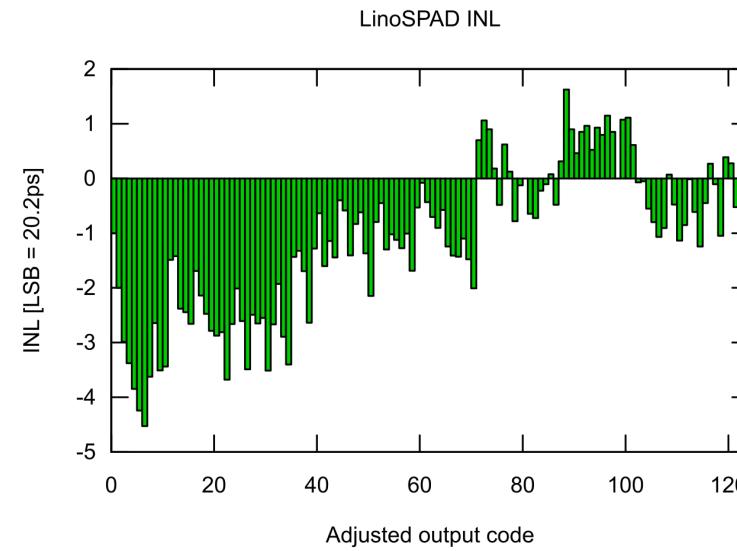


Low Precision, High Accuracy

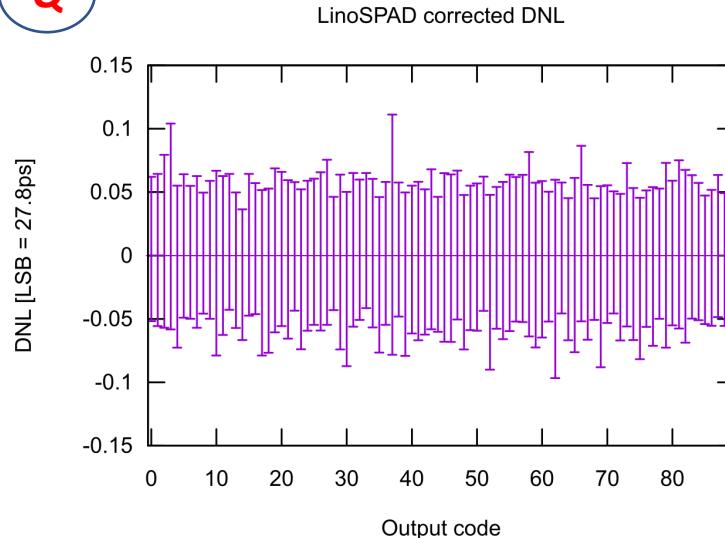
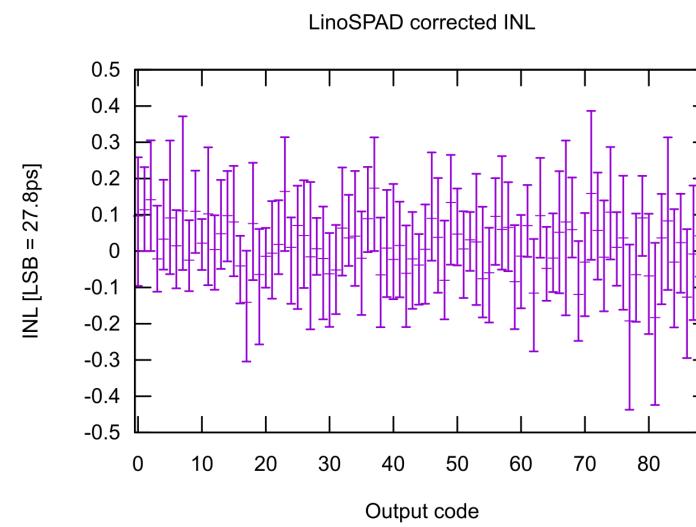
High Precision, Low Accuracy

Low Precision, Low Accuracy

9.4.1 Accuracy – Example



Q



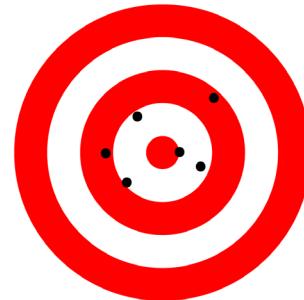
Calibration of a
Time-to-Digital
converter
S. Burri, EPFL, MDPI
Instruments, 2018

9.4.2 Precision

Precision -> spread (variance)

- The **precision** of a measurement gives information about the spread of the measured set of data collected by the measurement.
- A precise measurement distribution will have a **low dispersion** of data (hence a small variance), but it might have a mean value very distant from the real one.
- In order to enhance precision, the most simple way is to **increase the size of the sample data**. In fact, as shown previously, for experimental data the variance decreases linearly with the number of samples collected.

High Precision, High Accuracy



Low Precision, High Accuracy

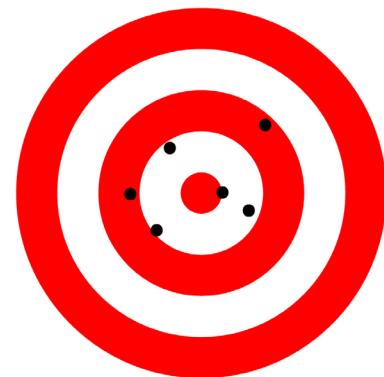
High Precision, Low Accuracy

Low Precision, Low Accuracy

I.G. Hughes, T.P.A. Hase, *Measurements and their Uncertainties*, 1st ed., 2010, Chap. 1

9.4.2 Accuracy vs. Precision

High Precision, High Accuracy



Low Precision, High Accuracy

High Precision, Low Accuracy

Low Precision, Low Accuracy

9.4.3 Resolution

- The [resolution](#) of a measurement is the smallest change in the underlying physical quantity that produces a response in the measurement. [Wikipedia]
- In case of an [ADC](#) (analog-to-digital converter), the resolution is given by one bit.

Example: for an oscilloscope with an 8 bits ADC, set at 100 mV/div (i.e. for a total screen width of 800 mV), the resolution of each point collected is given by:

$$8 \text{ bits} = 2^8 \text{ different values} \rightarrow Res = \frac{800}{256} \text{ mV} = 3.125 \text{ mV}$$

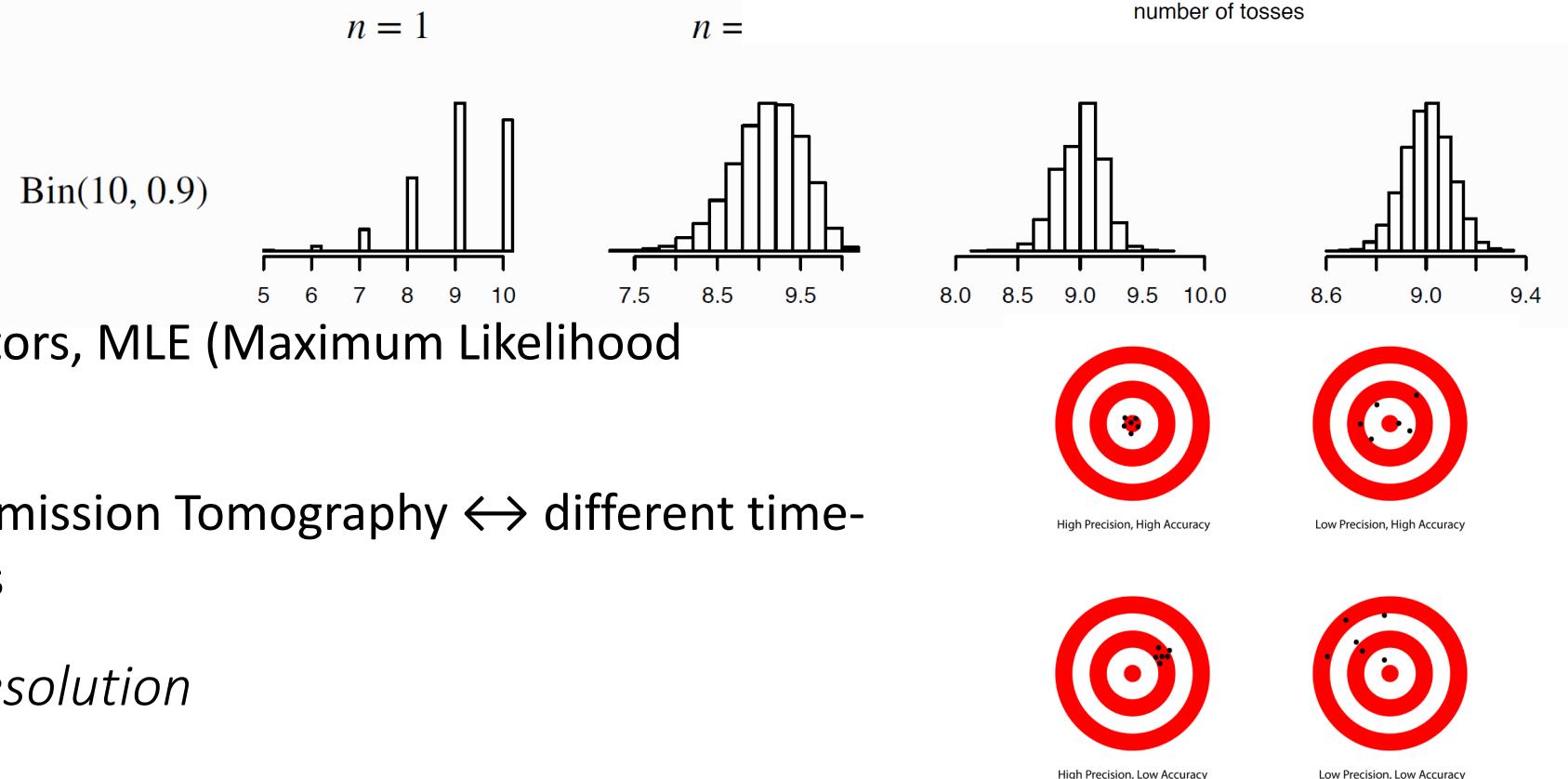
Take-home Messages/W9-3

- *Law of Large Numbers:*
 - Concept of i.i.d. random variables
 - Mean and Variance

- *Central Limit Theorem*

- *Estimation Theory:*

- Examples of estimators, MLE (Maximum Likelihood Estimator)
- Example: Positron Emission Tomography \leftrightarrow different time-of-arrival estimators
- *Precision, Accuracy, Resolution*



Appendix A: Gamma Distribution – Gamma Function

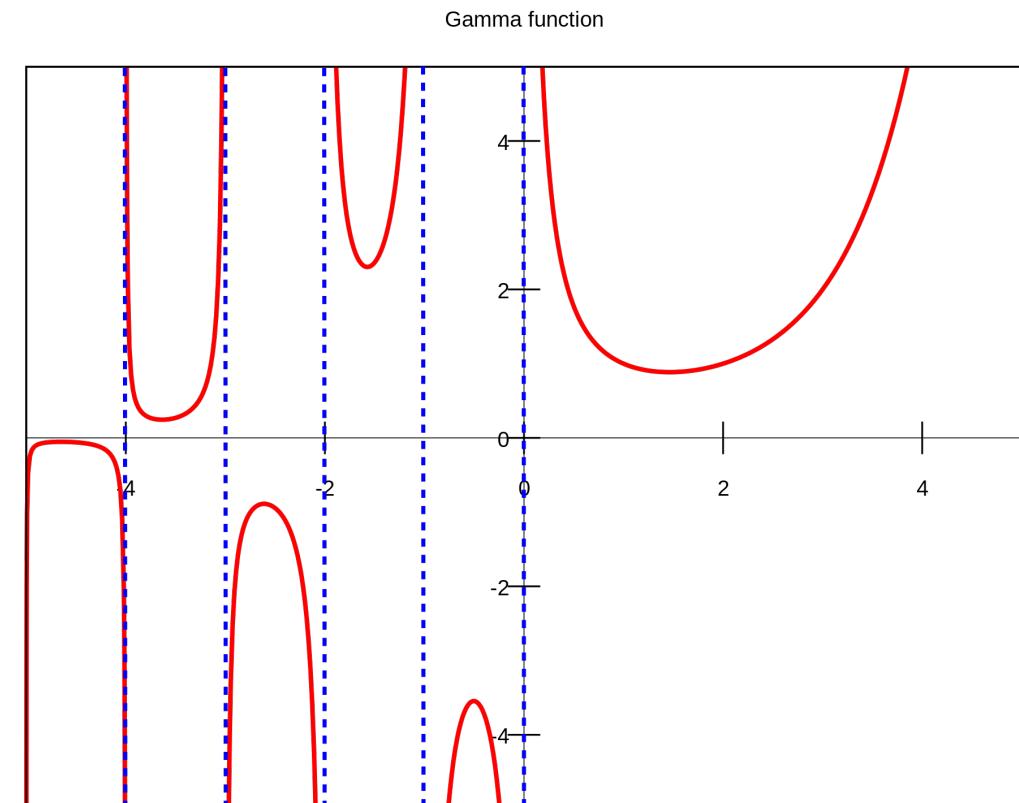
- While the Exponential distribution represents the wait time before the first success under the conditions of memorylessness, the **gamma distribution** represents the *total waiting time for multiple successes* (hence it is the sum of multiple exponential distributions).
- We first define the **gamma function** as:

$$\Gamma(a) = \int_0^{\infty} x^a e^{-x} \frac{dx}{x}, \quad a > 0$$

- The gamma function has the following **properties**:

$$\Gamma(a + 1) = a \Gamma(a)$$

$$\Gamma(n) = (n - 1)!$$



Appendix A: Gamma Distribution (contd.)

- Then, we say that X has a **gamma distribution** (we will write $X \sim \text{Gamma}(a, 1)$) if:

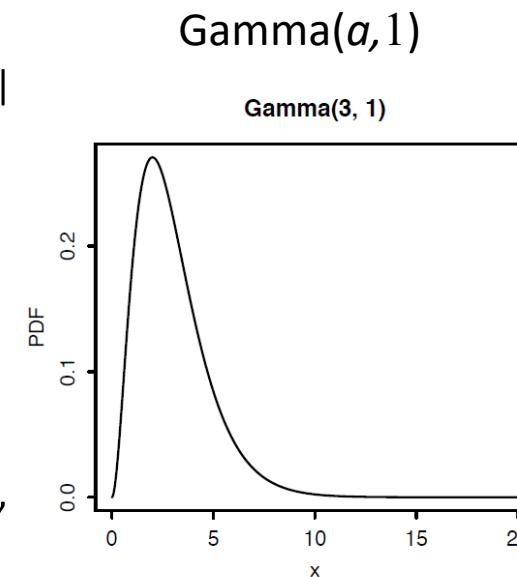
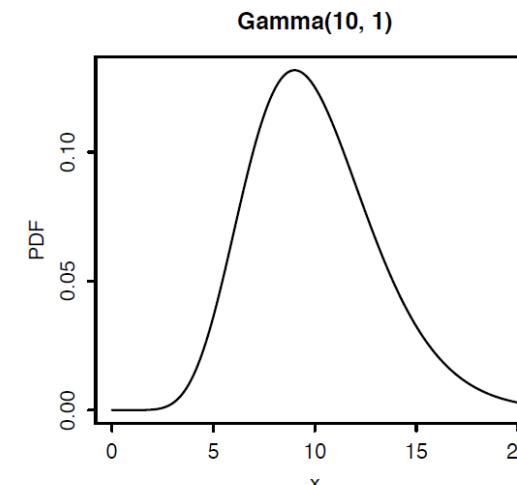
$$\text{PDF: } f_X(x) = \frac{1}{\Gamma(a)} x^a e^{-x} \frac{1}{x}, \quad x > 0$$

- From the **gamma distribution** of $X \sim \text{Gamma}(a, 1)$, we get, for $\lambda > 0$, the more general $Y = X/\lambda \sim \text{Gamma}(a, \lambda)$:

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right| = \frac{1}{\Gamma(a)} (\lambda y)^a e^{-\lambda y} \frac{1}{\lambda y} \lambda$$

hence

$$\text{PDF: } f_Y(y) = \frac{1}{\Gamma(a)} (\lambda y)^a e^{-\lambda y} \frac{1}{y}, \quad y > 0$$



J.K. Blitzstein, J. Hwang, *Introduction to Probability*, 1st ed., 2015, Chap. 8.4

Appendix A: Gamma Distribution (contd.)

- From the PDF of the **gamma distribution** just obtained $Y \sim \text{Gamma}(a, \lambda)$, it can be shown that the Gamma is nothing else but the distribution obtained by summing up a independent exponential distributions. In fact, for $a = 1$:

$$\text{PDF: } f_Y(y) = \frac{1}{\Gamma(a)} (\lambda y)^a e^{-\lambda y} \frac{1}{y}, \quad y > 0$$

reduces to

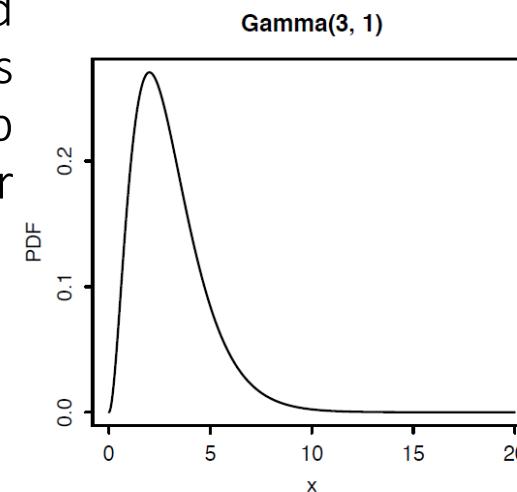
$$\text{PDF: } f_Y(y) = \lambda y e^{-\lambda y} \frac{1}{y} = \lambda e^{-\lambda y}, \quad y > 0$$

which is the exponential distribution.

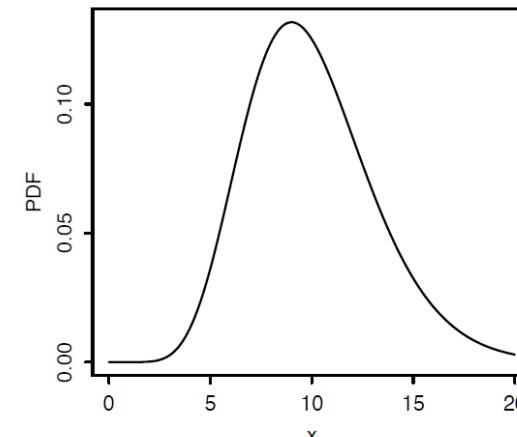
- Follows that, let X_1, X_2, \dots, X_n be n i.i.d. $\text{Expo}(\lambda)$. Then:

$$Y = X_1 + \dots + X_n \sim \text{Gamma}(n, \lambda)$$

Gamma($a, 1$)



Gamma(10, 1)



Appendix A: Gamma Distribution (contd.)

- For a $X \sim \text{Gamma}(a, 1)$, it follows:

Mean: $E\{X\} = \int_0^{\infty} \frac{1}{\Gamma(a)} x^{a+1} e^{-x} \frac{dx}{x} = \frac{\Gamma(a+1)}{\Gamma(a)} = a$

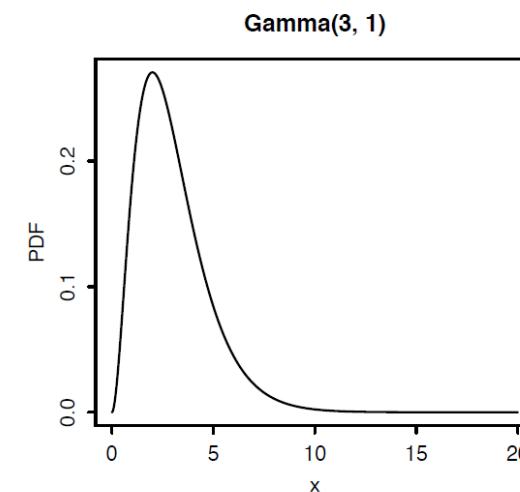
Second Moment: $E\{X^2\} = \int_0^{\infty} \frac{1}{\Gamma(a)} x^{a+2} e^{-x} \frac{dx}{x} =$

$$= \frac{\Gamma(a+2)}{\Gamma(a)} = a(a+1)$$

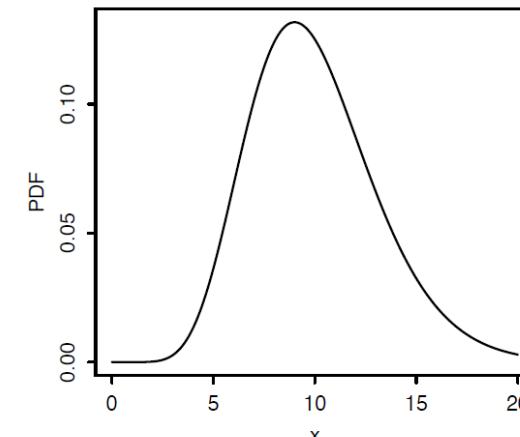
Variance: $Var\{X\} = E\{X^2\} - (E\{X\})^2 =$

$$= a(a+1) - a^2 = a$$

Gamma($a, 1$)



Gamma(10, 1)



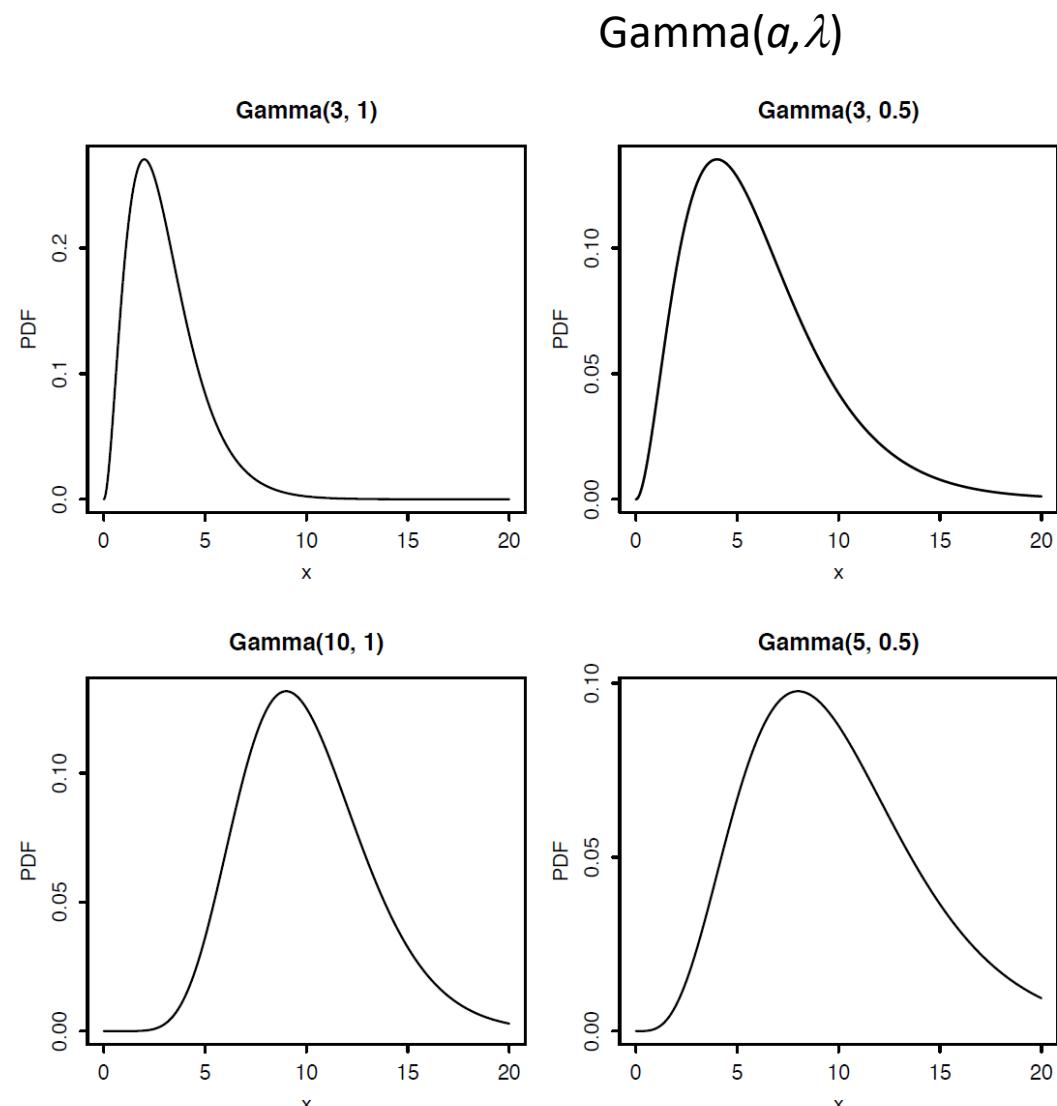
Appendix A: Gamma Distribution (contd.)

- For the more general gamma distribution $Y = X/\lambda \sim \text{Gamma}(a, \lambda)$, by simple transformation, we obtain:

$$\text{Mean: } E\{Y\} = \frac{1}{\lambda} E\{X\} = \frac{a}{\lambda}$$

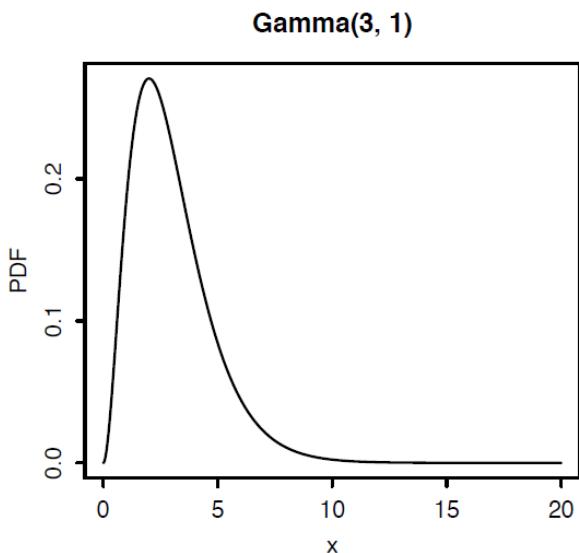
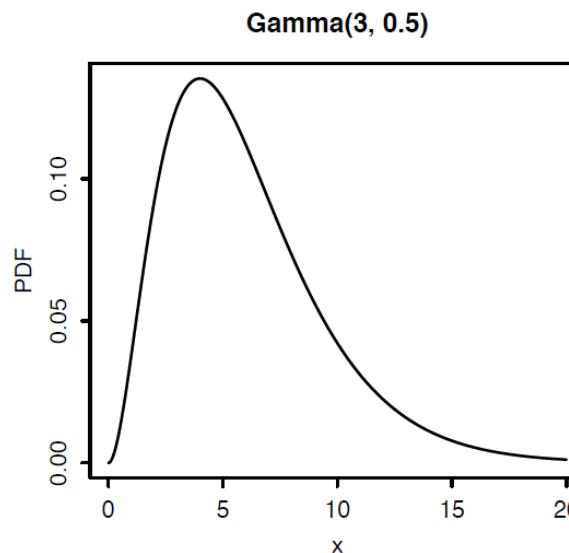
$$\text{Second Moment: } E\{Y^2\} = \frac{1}{\lambda^2} E\{X^2\} = \frac{a(a+1)}{\lambda^2}$$

$$\text{Variance: } \text{Var}\{Y\} = \frac{1}{\lambda^2} \text{Var}\{X\} = \frac{a}{\lambda^2}$$



-> calculate mean/variance for some examples

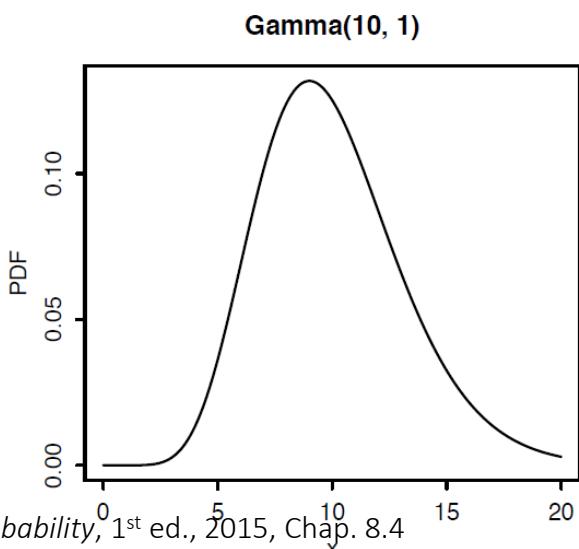
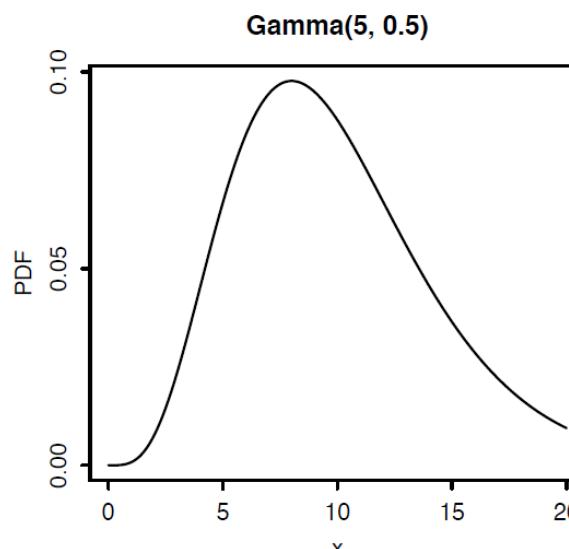
Appendix A: Gamma Distribution (contd.)



Gamma(a, λ)

-> calculate mean/variance
for some examples

Mean: $\frac{a}{\lambda}$



Variance: $\frac{a}{\lambda^2}$

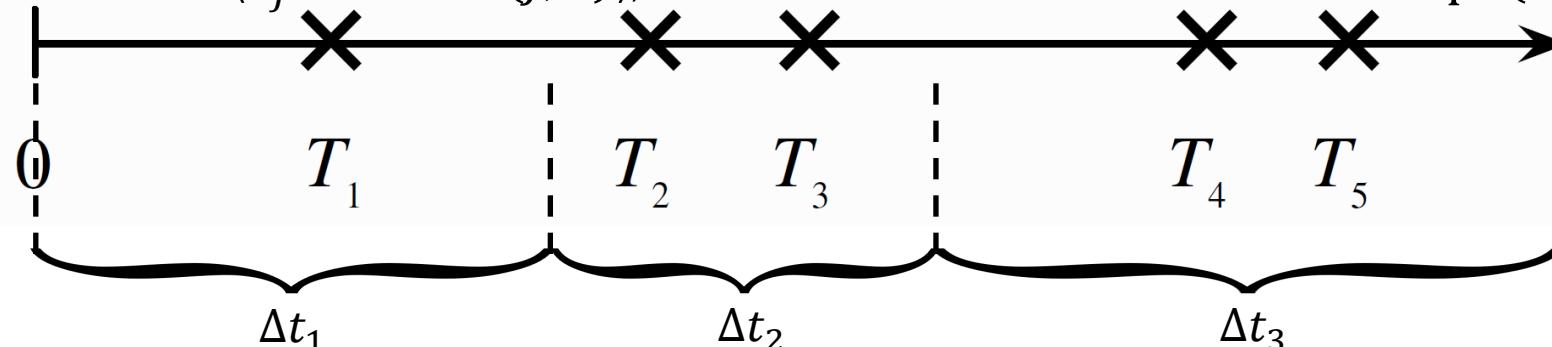
J.K. Blitzstein, J. Hwang, *Introduction to Probability*, 1st ed., 2015, Chap. 8.4

Appendix B: Poisson Process

- Definition: a sequence of arrivals in continuous time with rate λ is a **(1D) Poisson process with rate λ** if the following two conditions hold:
 - 1) The number of arrivals that occur in an interval of length t is a $\text{Pois}(\lambda t)$ RV.
 - 2) The numbers of arrivals that occur in disjoint intervals – e.g. $(0,10)$, $[10,12)$ and $[15,\infty)$ – are independent of each other.
- If T_j is the time of the j -th arrival, $N(t)$ is the number of events up to the time t , follows:

$$P\{T_1 > t\} = P\{N(t) = 0\} = e^{-\lambda t}$$

so T_1 has an Exponential distribution ($T_1 \sim \text{Expo}(\lambda)$), hence T_j , being the sum of j i.i.d. exponentials, is a Gamma distribution ($T_j \sim \text{Gamma}(j, \lambda)$), and the interarrival times are i.i.d. $\text{Expo}(\lambda)$ RVs.



Appendix B: Poisson Process

- NB: i.i.d. = independent and identically distributed Random Variables, have the same PDF and are all mutually independent
- “*Confirmation*” that the Exponential distribution is closely connected to the Poisson distribution!
- Examples of Poisson processes:
 - 1D: cars passing by a highway checkpoint;
 - 2D: flowers in a meadow;
 - 3D: stars in a region of the galaxy.”

Dark Counts and “real” detections in a SPAD sensor

J.K. Blitzstein, J. Hwang, *Introduction to Probability*, 1st ed., 2015, Chap. 13

Appendix B: Poisson Process

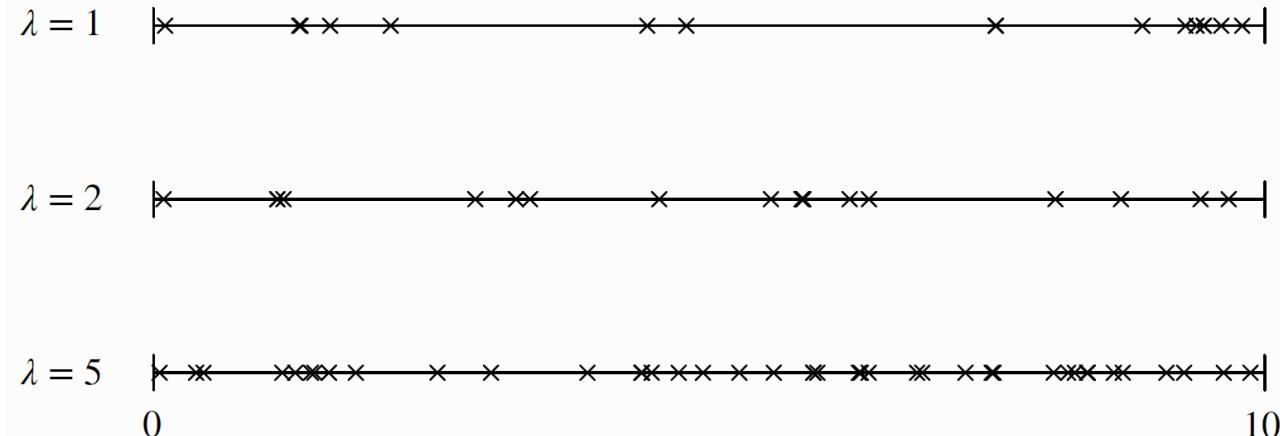
- Timeline: $(0, +\infty)$ but it could also be $(-\infty, +\infty)$
- To generate n arrivals from a Poisson process with rate λ :

1. Generate n i.i.d. $\text{Expo}(\lambda)$ RVs:
 X_1, X_2, \dots, X_n

2. For $j = 1, 2, \dots, n$ set $T_j = X_1 + \dots + X_j$

- Then we can take the T_1, \dots, T_n to be the arrival times.

Simulate Poisson Processes in 1D



Note: interarrival times are i.i.d., but the arrivals are not evenly spaced -> there is a lot of variability in the interarrival times, which produces *Poisson clumping*

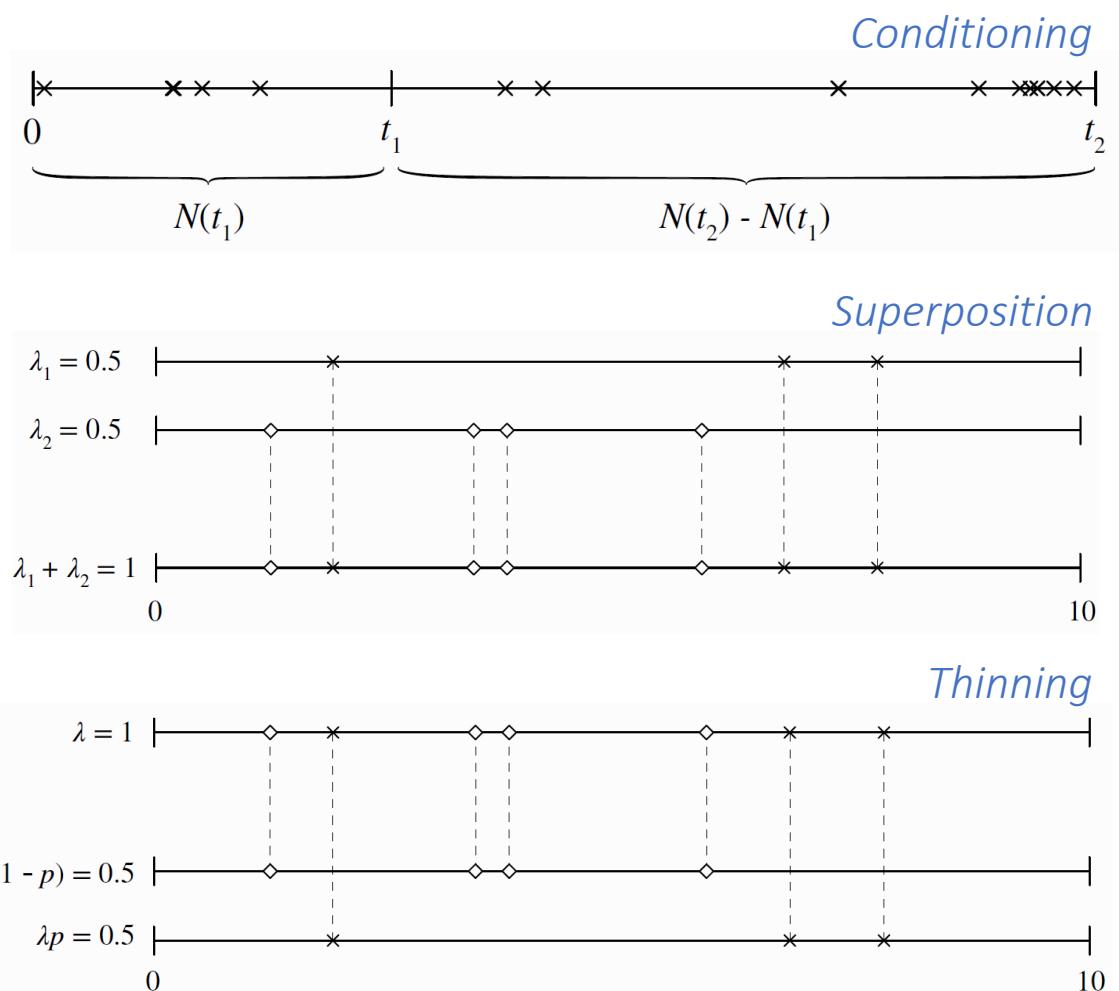
Appendix B: Poisson Process

- A Poisson Process has the following **three properties**:

1. *Conditioning*: let $\{N(t), t > 0\}$ be a Poisson Process with rate λ and $t_2 > t_1$. Then the conditional distribution stands:

$$N(t_1) | N(t_2) = n \sim \text{Bin}\left(n, \frac{t_1}{t_2}\right)$$

2. *Superposition*: let $\{N_1(t), t > 0\}$ and $\{N_2(t), t > 0\}$ be two independent Poisson Processes with rates λ_1 and λ_2 . Then the combined process $N(t) = N_1(t) + N_2(t)$ is a Poisson process with rate $\lambda_1 + \lambda_2$.



Appendix B: Poisson Process

- A Poisson Process has the following [three properties](#):

3. *Thinning*: let $\{N(t), t > 0\}$ be a Poisson Process with rate λ , and classify each event at the arrival as either type-1 events (with probability p) or type-2 events (with probability $1 - p$), independently. Then the type-1 events form a Poisson process with rate λp , the type-2 events form a Poisson process with rate $\lambda(1 - p)$ and they are independent.

